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Abstract

To understand how living organisms maintain their lives, it is important to
regard the living organisms as nonequilibrium open systems, since organisms
live through the dissipation of the chemical energy of the nutrition. So far, a
number of studies on physics under nonequilibrium open conditions have been
performed both experimentally and theoretically. Among these studies, spatio-
temporal self-organization has been one of the most interesting topics. As a
theoretical model of spatio-temporal pattern formation, reaction-diffusion sys-
tems are widely adopted. Under the framework of such a reaction-diffusion
system, spontaneous pattern formation can be generated theoretically. So far a
number of experimental, numerical, and theoretical studies have been performed
on reaction-diffusion systems.

Reaction-diffusion equations can be adopted only when the field is fixed.
Thinking of the phenomena in the real world, however, the field itself usually
moves. We introduce this effect by adding the advection term to the reaction-
diffusion equation. It can be said that this is the natural extension of the
reaction-diffusion system. In this thesis, the mutual coupling between pattern
formation in reaction-diffusion systems and convective flow is investigated. As
the scales of the flow velocity and propagating-wave velocity are comparable,
the novel phenomena can be seen both experimentally and theoretically.

On the other hand, in the theoretical studies, the boundary effects are rarely
considered. In order to discuss on the pattern formation such as a target pattern,
a spiral pattern, etc., there is no need to think about the boundary. In these
studies, the effects of boundaries should be avoided and a lot of efforts have
been made to eliminate the boundary effects. In the real world, however, the
boundary of the field often affects the behavior of the whole system. If the typical
scale of the system is comparable to the characteristic length of the pattern, the
boundary effect is quite large.

Thus, the main topics in this thesis are the convective flow coupled with
reaction-diffusion systems and boundary effects on reaction-diffusion systems.
These two effects are important in order to understand the phenomena in the
real world. In this thesis some experimental results are exemplified and the-
oretical discussion and/or numerical modeling are made for each system from
the viewpoint of the reaction-diffusion systems with convective and/or boundary
effects.
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Chapter 1

Introduction

In this chapter, the perspective of this thesis is shown. The thesis
includes mainly two topics: convective flow coupled with reaction-
diffusion systems, and the boundary effects on reaction-diffusion sys-
tems. The importance of these two topics is depicted. Then, the
outline of this thesis is presented.

1.1 Perspective

To understand how living organisms maintain their lives, it is important to
regard the living organisms as nonequilibrium open systems, since organisms
live through the dissipation of the chemical energy of chemical substances such
as adenosine triphosphate (ATP) and so on [13,14]. So far, a number of studies
on physics under nonequilibrium open conditions have been performed both
experimentally and theoretically.

Among these studies, spatio-temporal self-organization has been one of the
most interesting topics. As a theoretical model of spatio-temporal pattern for-
mation, reaction-diffusion systems are widely adopted. In the framework of
reaction-diffusion systems, it is assumed that the concentrations of chemical
components or other physical quantities are defined at every point, i.e., local
equilibrium is achieved, and the temporal changes in these physical quantities
are described as the combination of the local dynamics (reaction) and trans-
portation from/to the neighborhood proportional to the gradient (diffusion).

Typically, a reaction-diffusion equation for a N -component system is written
as

∂ci

∂t
= fi(c1, c2, · · · , ci, · · · , cN) + Di∇2ci, (1.1)

where ci is the physical quantity such as concentration of the chemical compo-
nent, Di is a diffusion constant and fi(c1, c2, · · · , ci, · · · , cN) is the summation of
the local dynamics of the chemical reaction regarding the i-th component.

Under the framework of such a reaction-diffusion system, various sponta-
neous pattern formation can be predicted theoretically. A wave or wave packets
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8 Chapter 1 Introduction

can propagate on the reaction field and forms fascinating patterns such as a tar-
get pattern or a spiral pattern. These patterns have been analytically studied
based on the phase reduction, bifurcation theory, and so on [15,16]. On the other
hand, Turing proposed a novel framework of pattern formation called a “Turing
pattern”; i.e., a static pattern can be generated in a two-or-more-component
system when the diffusion constants are quite different from each other [17].

There are also a large number of experimental systems which can be described
as reaction-diffusion systems. Belousov-Zhabotinsky (BZ) reaction is one of
them [18, 19]. The detailed introduction of BZ reaction is in Chapter 2. The
oxidization pattern of carbon monoxide on platinum substrate [20], the pattern
of combustion wave [21] or some other systems have also been studied. In these
systems, the chemical wave propagation and/or spatio-temporal patterns can be
observed. As for the Turing pattern, Ouyang et al. and de Kepper et al. have
found the Turing patterns using the chemical reaction in the gel systems [22,23].
So far, there are many reports on the novel spatio-temporal pattern formation
such as inward spirals [24], multiarm spirals [25], etc.

In the living organisms, it was said that the spatio-temporal self-organization
is essential for the patterns on the animal skin, such as zebras, tigers and seashells
[26]. Kondo et al. showed that the Turing pattern is seen in the pattern on the
skin of a fish [27]. Today, many examples of such pattern formation in the
living organisms have been found [28]. One of the most famous one is the pulse
propagation on the nerve cells [29, 30]. It has been well established that, in
cable-like nerve cells, pulses on the membrane propagate at a constant velocity
and amplitude. With the physiological measurements, the phenomenological
model called the Hodgkin-Huxley equation was established [29]. These equations
are reduced to FitzHugh-Nagumo equation by adiabatic approximation [31–33].
The FitzHugh-Nagumo equation with a diffusion term has been widely used as
a theoretical model for nerve systems. Therefore, reaction-diffusion systems are
often used for a model of living organisms.

Reaction-diffusion equations, however, can be adopted only when the field is
fixed. In the other words, the spatial transport is allowed only through diffusion.
Thinking of the phenomena in the real world, the field itself usually moves. For
example, the chemical reaction inside a cell should be affected by the proto-
plasmic streaming, and the solution in the reactor is often stirred. Thus, it is
important to consider the motion of the field itself.

We introduce this effect by adding the advection term to the reaction-diffusion
equation. It can be said that this is the natural extension of the reaction-diffusion
system.

If the flow velocity and the typical scale of the change in the spatio-temporal
pattern, such as the velocity of propagating chemical waves, are quite different,
or if the typical length of the change in flow direction and the typical length
of the pattern are quite different, there seems to be no interesting phenomena.
For example, if the flow is much faster than the chemical wave propagation,
the chemical components or other physical quantities are stirred, and become
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uniform, which results in no pattern formation. If the flow direction is almost
uniform throughout the system, there seems to be no effects on pattern formation
but the pattern is transferred as a whole.

In this thesis, the mutual coupling between pattern formation in reaction-
diffusion systems and convective flow are investigated. As the scales of the
flow velocities and the propagating wave velocity are comparable, the novel
phenomena can be seen both experimentally and theoretically. This coupling
between reaction-diffusion systems and convective flow is the first topic in this
thesis. The coupling between reaction-diffusion systems and convective flow can
be regarded as an experimental model where chemical energy is transduced into
mechanical motion.

On the other hand, in the theoretical studies, the boundary effects are rarely
considered. In order to discuss on the pattern formation such as a target pattern,
a spiral pattern, etc., there is no need to think about the boundary. In these
studies, the effects of boundaries should be avoided and a lot of efforts have been
made to eliminate the boundary effects.

In the real world, however, the boundary of the field often affects the behavior
of the whole system. If the typical scale of the system is comparable to the
characteristic length of the pattern, the boundary effect is quite important. In
the experiments using BZ reaction, the change in the behavior in a narrow
space was reported using a gel system [34, 35], a droplet system [36], a bead
system [37, 38], etc.

As in the above paragraph, the nerve systems can be treated as reaction-
diffusion systems. In recent years, based on the advances in experimental tech-
niques, it is getting clearer that the manner of this pulse propagation critically
depends on the thickness or width of the nerve cells. For example, it has been
reported that the dendritic shape of nerve cells strongly affects the propagation
of an excited wave [39–41].

In this thesis, thus, using BZ reaction as an experimental model, the bound-
ary effects on chemical wave propagation are exemplified. The typical size of
the system is around 100 µm to 1 mm, which corresponds to the typical width
of one chemical wave. This boundary effects on reaction-diffusion systems are
second topic in this thesis.

As a summary, the main topics in this thesis are the convective flow coupled
with reaction-diffusion systems and boundary effects on reaction-diffusion sys-
tems. These two effects are important in order to understand the phenomena in
the real world as reaction-diffusion systems. In this thesis, some experimental
results are exemplified and theoretical discussion and/or numerical modeling are
made for each system from the viewpoint of the reaction-diffusion systems with
convective and/or boundary effects.
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1.2 Outline of the thesis

In this section, the outline of this thesis is presented.
In Chapter 2, three important topics for discussion in this thesis are intro-

duced: Reaction diffusion systems, BZ reaction, and Marangoni convection due
to the surface tension difference.

This thesis includes mainly two topics: convective flow coupled with reaction-
diffusion systems and boundary effects on reaction-diffusion systems. These two
topics correspond to Parts II and III, respectively.

Part II includes four chapters. In Chapter 3, the convective flow induced by
the repetitive change in interfacial tension in BZ reaction is exemplified. The
characteristics of the convection are reproduced by numerical calculation based
on the reaction-diffusion equations coupled with convection. The contents of
this chapter are published in References [1] and [7]. In Chapter 4, the spon-
taneous motion of a droplet of BZ reaction medium is shown. The mechanism
is discussed related to the convection inside the droplet. The contents of this
chapter are published in References [1] and [2]. In Chapter 5, the spontaneous
motion of a camphor grain is firstly discussed. Then, the convective flow in-
duced by the surface tension gradient due to the nonuniform camphor layer on
the water surface is exemplified, and numerically reproduced by the reaction-
diffusion equation coupled with convection. At last, the effects of the convection
to spontaneous motion are presented. The contents of this chapter are published
in References [3], [8], and [4]. Chapter 6 includes three topics: the spontaneous
motion of an alcohol droplet on the aqueous phase, the spontaneous motion of
an oil droplet on a glass substrate in surfactant solution, and the spontaneous
motion of a phenanthroline disk coupled with chemical reaction. These are the
examples of spontaneous motion induced by the interfacial tension difference.
The contents of this chapter are published in References [10], [11], [4], and [9].

Part III includes three chapters. In Chapter 7, the slowing and stopping
of the chemical wave in the narrowing glass capillary is exemplified in BZ re-
action. The mechanism is theoretically analyzed related to the surface-volume
ratio. The contents of this chapter are published in References [5] and [12]. In
Chapter 8, the narrowing reaction field is achieved by the designed illumination
on photosensitive BZ reaction medium. The alternative disappearing of chem-
ical waves is exhibited at a certain light intensity. In Chapter 9, the geometry
of chemical wave propagating on a circular ring is studied. The two chemical
waves on two connected circular rings are also discussed from the viewpoint of
synchronization. The contents of this chapter are published in Reference [6].

The contents in this thesis are summarized and the future problems are
shown in Part IV.



Chapter 2

Background

In this chapter, three topics are introduced, which are important for
the discussion in this thesis: Reaction-diffusion systems, Belousov-
Zhabotinsky reaction, and Marangoni convection induced by the sur-
face tension difference.

2.1 Reaction diffusion systems coupled with con-

vection

In studies on spatio-temporal self-organization in nonequilibrium open systems,
reaction-diffusion systems are often used as representative model systems. The
advantage of a reaction-diffusion system is that spatio-temporal pattern forma-
tion can be described using simple equations regarding the dynamics of the local
concentrations of the chemicals. Thus, the dynamics of the system can be de-
scribed as the combination of the local dynamics and transportation from/to
the neighborhood proportional to the gradient, or diffusion.

The diffusion term is derived as follows. Diffusive flow J is assumed to
be proportional to the gradient of the concentration or some other physical
quantities, c,

J ∝ −∇c. (2.1)

From the equation of continuity,

∂c

∂t
= −∇ · J, (2.2)

the diffusion equation
∂c

∂t
= D∇2c (2.3)

is obtained, where D is a positive constant called a “diffusion constant”.
On the other hand, the local dynamics of a chemical reaction can be described

using ordinary differential equations based on the mass-action law, which states
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12 Chapter 2 Background

that the reaction rate is proportional to the product of the concentrations of the
reactants.

Taking these two terms into consideration, a reaction-diffusion equation is
derived:

∂c

∂t
= f(c) + D∇2c, (2.4)

where f(c) is the dynamics of the chemical reaction. For an N -component
system, this equation can be easily extended:

∂ci

∂t
= fi(c1, c2, · · · , ci, · · · , cN) + Di∇2ci. (2.5)

Under the framework of the reaction-diffusion systems, the local concentra-
tions of the chemical reagents can be described only on a fixed field. In the real
world, however, convective motion of the field is often observed: for example,
as in the chemical reactions in a stirred solution and the biochemical reactions
in cytoplasm. To consider this convective motion, an advection term should be
introduced to the reaction-diffusion equations. The flow J at the point with a
field velocity of v is

J = −D∇c + cv, (2.6)

instead of eq. (2.1). Based on the conservation of the chemical components, the
dynamics of c can be written as

∂c

∂t
= D∇2c −∇ · (cv). (2.7)

Here, if the volume of the field is incompressive (for example, the reaction in a
solution),

∇ · v = 0, (2.8)

the advection term can be written as v · ∇c instead of ∇ · (cv).
Overall, the dynamics of c in the incompressive field can be written

∂c

∂t
= D∇2c − v · ∇c. (2.9)

By adding the local dynamics of the chemical reaction, or the reaction term,
the reaction-diffusion-advection equations for the N -component system can be
written as

∂ci

∂t
= fi(c1, c2, · · · , ci, · · · , cN) + Di∇2ci − v · ∇ci. (2.10)

This can be regarded as a reaction-diffusion-advection equation [12].

2.2 Belousov-Zhabotinsky reaction

Belousov-Zhabotinsky reaction (BZ reaction) is famous as an experimental model
system for a reaction-diffusion system. In 1951, Belousov found the oscillatory
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(a) (b)

1 cm1 cm

Figure 2.1: Rhythmic change in color in BZ reaction. When the solution is
stirred, the solution oscillates between the (a) oxidized state (blue) and (b)
reduced state (red).

behavior in color of the solution, when he made an experiments to make a model
chemical system for metabolic pathways (TCA cycle). Belousov used citric acid
as a reactant and cerium as a catalyst. In this reaction, the solution is changed
between white and yellow. Unfortunately, Belousov’s observation was not widely
known, since people did not believe his experimental results. In 1964, Zhabotin-
sky used the catalyst of iron complex, i.e., ferroin, and reproduced Belousov’s
results. By using ferroin, the change in color is much easier to observe: the
solution changes between red and blue as shown in Fig. 2.1. In 1970, he ob-
served the spontaneous pattern formation in the solution, as BZ solution was
allowed to stand [18]. For example, chemical waves propagate as concentric
rings, or with a shape of spiral, which are called a target pattern, and a spi-
ral pattern, respectively (Fig. 2.2) [19]. Then, Gáspár found that BZ reaction
can be sensitive to the light intensity by using ruthenium complex as a catalyst
(Ru(bpy)3+

3 ) [42–45].

BZ reaction is an oscillatory chemical reaction between the oxidized state
and reduced state. In the reaction process, an autocatalytic process is said
to be the most important. This autocatalysis induces the nonlinearity in the
chemical reaction, which enables chemical oscillation as a limit cycle oscillation
in nonlinear systems.

There were a lot of studies on the mechanism of BZ reaction by considering
all the elementary processes. In 1972, Field, Körös, and Noyes proposed that
ten main processes are important for BZ reaction [46]. This model is called the
FKN model. Based on this model, the kinetic equations on the concentrations
of the products, reactants, and intermediates are derived, though this is so
complicated. By adiabatic approximation on the fast processes, we can get a
simpler model with a smaller number of variables.
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(a) (b)

3 mm3 mm

Figure 2.2: Spontaneous pattern formation in BZ reaction using ferroin as a cat-
alyst. (a) Target pattern. (b) Spiral pattern. Red and blue regions correspond
to the oxidized and reduced states, respectively.

Among the reduced models, the Oregonator has widely been used, which
was proposed by Field and Noyes. They assumed that the BZ solution takes
one of the two characteristic states: i.e., HBrO2-rich state and HBrO2-poor
state, where HBrO2 is an unstable intermediate. In this model, the following
five chemical processes are important:

A + Y
k1−→ X + P, (2.11)

X + Y
k2−→ 2P, (2.12)

A + X
k3−→ 2X + 2Z, (2.13)

2X
k4−→ A + P, (2.14)

Z + B
k5−→ hY, (2.15)

where A, B, P, X, Y, and Z correspond to BrO−
3 , CH2(COOH)2+BrCH(COOH)2,

HOBr，HBrO2, Br− and the oxidized catalyst, respectively. h is the parameter
which corresponds to the number of Br− ions produced by one catalyst molecule
in the oxidized state.

Assuming that the temporal change in the concentrations of A and B is
negligible, the concentrations of A and B, i.e., A and B, can be set as constants.
Then, the kinetic differential equations for X, Y, and Z can be derived:

ε
dX

dt
= k1AY − k2XY + k3AX − 2k4X

2, (2.16)

ε′
dY

dt
= −k1AY − k2XY + hk5BZ, (2.17)

dZ

dt
= 2k3AX − k5BZ, (2.18)
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where X，Y，and Z correspond to the concentrations of X，Y，and Z, respec-
tively. ki(i = 1 · 5) are the reaction constants on each reaction (2.11) to (2.15)
and ε and ε′ are the positive small constants that correspond to the difference
in the reaction rate. The above-mentioned differential equations are called the
3-variable Oregonator [47]．

Since the temporal change in Y is much faster than the changes in X and Z,
Y can also be reduced adiabatically, and the following model is obtained. This
model is called the 2-variable Oregonator (Tyson version) [48]. Here, it is noted
that X and Y is replaced by U and V , respectively.

ε
dU

dt
= U(1 − U) − fV

U − q

U + q
≡ F (U, V ) , (2.19)

dV

dt
= U − V ≡ G (U, V ) , (2.20)

where U and V correspond to the concentrations of HBrO2 and the oxidized
catalyst, respectively. In other words, the region with larger V corresponds to
the oxidized state (blue if using ferroin) and that with smaller V corresponds
to the reduced state (red if using ferroin). f，q，and ε are the parameters that
correspond to the threshold for excitation, excitability, and nondimensionalized
reaction constant, respectively. The two-dimensional dynamical system with
the equations (2.19) and (2.20) has one stable fixed point (excited state) or one
unstable fixed point and one stable limit cycle (oscillatory state) depending on
these parameters. For example, as the paremeter f is changed, a stable fixed
point destabilizes and a limit cycle orbit comes out, i.e., the system exhibits
Hopf bifurcation. The nullclines of the dynamical systems are shown in Fig.
2.3.

On the contrary, Rovinsky and Zhabotinsky also proposed another way of
reduction [49]. This model is called the Rovinsky-Zhabotinsky model, which can
be written as follows:

ε
dU

dt
= U(1 − U) − 2qα

V

1 − V

U − µ

U + µ
, (2.21)

dV

dt
= U − α

U

1 − U
V, (2.22)

where U and V correspond to the concentrations of HBrO2 and [Fe(phen)3]
3+,

respectively.
The difference between Rovinsky-Zhabotinsky model and Tyson version 2-

variable Oregonator is the term of U
1−U

. It is said that the BZ reaction with
ferroin catalyst is reproduced better by the Rovinsky Zhabotinsky model, but
in the present article, Tyson version 2-variable Oregonator is adopted. Figure
2.4 shows the results of numerical calculation on the pattern formation using
Tyson version Oregonator.

So far, there have been a large number of studies on BZ reaction, since it
is easily achieved by mixing a few chemical compounds, and easily controlled.
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Figure 2.3: Nullclines of the 2-variable Oregonator (Tyson version). (a) Oscilla-
tory state. (b) Excitable state. The parameters are q = 0.0008 and (a) f = 1.5,
(b) f = 4. The lower figures are the magnifications near the intersections.

(a) (b)

Figure 2.4: Numerical results on pattern formation using the Oregonator (Tyson
version). (a) A target pattern and (b) a spiral pattern are exhibited. The
parameters are f = 3, q = 0.0008, and ε = 0.04.
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flow velocity: v = (u, v)

Figure 2.5: Schematic illustration on the system considered here. At the upper
boundary, the surface tension is defined as γ(x). At the other boundaries, a
fixed boundary condition is adopted.

The mechanism of BZ reaction has been almost solved, but it is widely used as a
model experimental systems for a reaction-diffusion system, or a nonequilibrium
open system.

2.3 Marangoni effect and interfacial tension

It is known that spatial gradient of surface tension can cause convection. In this
section, some characteristics of surface-tension-driven convection, or Marangoni
effect, are introduced.

There are two types of the Marangoni effect: one is the thermal Marangoni
effect and the other is the solutal Marangoni effect. The former is the convection
driven by the surface tension gradient due to the temperature gradient, and the
latter is that due to the concentration gradient [50, 51]. As for the thermal
Marangoni effect, there have been a number of reports, but there have been
only a few reports on the solutal Marangoni effect. In this thesis, the solutal
Marangoni effect is mainly concerned.

The Marangoni effect can be understood in the framework of hydrodynamics.
Using the Navier-Stokes equation, the surface tension gradient is introduced as
a shear at the surface. Here, we consider the system as shown in Fig. 2.5. The
x axis is set along the surface, and the z axis is perpendicular to the x axis.
Supposing the component of the field velocity in x and z axis are u and v, the
surface tension gradient along x axis is proportional to the tangential gradient
of u:

ν
∂u

∂z
= −∂γ

∂x
, (2.23)

where ν is the kinetic viscosity of the medium. Here, it is to be noted that the
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surface has no curvature. As the surface have a certain curvature, the pressure
difference between two phases should be considered, i.e., Laplace pressure [52].

In Chapters 3 and 5, we use another formulation, i.e., we introduce the sur-
face tension as a volume force. We adopt the modified Navier-Stokes equations
for incompressive fluid;

ρ

(
∂v

∂t
+ (v · ∇)v

)
= η∇2v −∇p + Fi, (2.24)

and
∇ · v = 0. (2.25)

The interfacial tension term Fi has the following shape:

Fi =
∂γ

∂x
δ(z)ex. (2.26)

In this formulation, the surface tension is introduced as a volume force. The
compatibility between eqs. (2.23) and (2.26) are confirmed as follows: A steady
state is assumed and the pressure term is also assumed to be neglected. Then,
eq. (2.24) becomes

ρv · ∇v = η∇2v + Fi. (2.27)

When ρ/η is small, i.e., Re = ρvl/η << 1, the nonlinear term can be neglected:

η∇2v + Fi = 0. (2.28)

Here, the system as shown in Fig. 2.5 is considered. In this discussion, we
want to know the features near the interface, where v is nearly 0. For the x
component of v, u, follows the equation:

η

ρ
∇2u =

∂γ

∂x
δ(z). (2.29)

By integrating eq. (2.29) with z from 0 to b,

η

ρ

(∫ b

0

∂2u

∂x2
dz +

∂u

∂z

∣∣∣∣∣
z=b

− ∂u

∂z

∣∣∣∣∣
z=0

)
=

∂γ

∂x
. (2.30)

When the effect of the bottom interface is small enough, or the system is
deep enough, we can assume that

∂u

∂z

∣∣∣∣∣
z=b

= 0, (2.31)

at the bottom interface. The first term of the left side is∫ b

0

∂2u

∂x2
dz =

∫ b

0

∂

∂x

(
−∂v

∂z

)
dz

=
∫ b

0

∂

∂z

(
−∂v

∂x

)
dz

=
∂v

∂x

∣∣∣∣∣
z=b

− ∂v

∂x

∣∣∣∣∣
z=0

= 0, (2.32)
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Figure 2.6: Schematic illustration on the theoretical system in three dimen-
sion. The competition between the transportation by diffusion and by flow is
important.

where the incompressive condition (eq. (2.25)) is used. Equation (2.30) can be
written as follows:

ν
∂u

∂z

∣∣∣∣∣
z=0

= −∂γ

∂x
, (2.33)

where ν = η/ρ.
Thus, the relationship between the surface tension and the tangential gradi-

ent of velocity (eq. (2.23)) is achieved.
By the way, the characteristics of the surface-tension driven convection can

be identified by the nondimensional number named Marangoni number. Here,
the meanings of this nondimensional number are easily exemplified.

We assume the system where two regions with the concentrations of c1 and
c2 are at the distance of l. The width of the system is w and the depth is h.
The coordinate is set so that the x coordinate meets the horizontal surface as
shown in Fig. 2.6. The origin is set at the position where the concentration is
c1.

Without convection, the profile of the concentration should be linear:

c(x) = c1 + (c2 − c1)x ≡ c1 + ∆cx. (2.34)

This concentration gradient causes the gradient in surface tension, which drives
the convective flow. The driving force per unit area is

(γ2 − γ1)w/l, (2.35)

where γ1 and γ2 correspond to the surface tension for the regions with the
concentration of c1 and c2, respectively. The driving force is assumed to be
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averaged, and the driving force per unit volume can be written as

(γ2 − γ1)w/lh = ∆γw/lh. (2.36)

On the other hand, if the Marangoni flow with a velocity of v was induced,
the friction force per unit volume would be

|η∇v| d ≈ ηv

h
d. (2.37)

By assuming that the driving force is balanced to the friction force, i.e.,

∆γw

lh
=

ηv

h
w (2.38)

we can derive the following equation,

v =
∆γ

η
. (2.39)

When the concentration difference is small enough, the surface tension gradient
is described as a linear relationship:

∆γ =
dγ

dc
∆c. (2.40)

Therefore, eq. (2.39) leads

v =
∆c

η

dγ

dc
. (2.41)

Considering the above discussion, the rate of transport by the flow is

Mflow = v∆c =
(∆c)2

η

dγ

dc
. (2.42)

On the other hand, the rate of transportation by diffusion is

Mdiffusion = D
∆c

l
(2.43)

The critical value for whether convection is induced or not is the point where
the above two transport rates become on the same scale. By considering the ratio
between Mflow and Mdiffusion, we can discuss on whether convection is induced
by the interfacial tension gradient. The ratio is written as follows:

Mflow

Mdiffusion

=
(∆c)2

ηD∆c

dγ

dc
=

∆c

ηD

dγ

dc
≡ Ma. (2.44)

Thus, we can discuss on whether convection induced by surface tension hap-
pens or not using Marangoni number, Ma.
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Chapter 3

Convective flow coupled with BZ
reaction

In this chapter, the convective flow induced by interfacial tension
change in BZ reaction is exhibited. This system is a typical ex-
ample of the reaction-diffusion-advection system. The convection is
observed in the experiments [1], and the properties of the convective
flow can be reproduced in numerical calculations [7].

3.1 Introduction

It was reported that the interfacial tension of BZ medium changes synchronized
with the chemical oscillation, that is, BZ medium in the oxidized state has
higher interfacial tension than that in the reduced state [53]. The catalyst used
in the BZ reaction is ferroin, which is the complex of the ferrous ion and 1,10-
phenanthroline. Since the phenanthroline is hydrophobic, the catalyst tends to
be distributed near the surface and reduces the interfacial tension. A catalyst
with a higher valence (oxidized form) is even more hydrophilic than that with a
lower valence (reduced form). Therefore, in BZ solution, the surface distribution
of the catalyst is less in the oxidized state than in the reduced state, which causes
the difference in surface tension.

Driven by the repetitive change in interfacial tension, Miike et al. reported
that Marangoni convection is induced at the free surface of BZ medium [54–56].
Though there have been some other reports on the convective flow in BZ reaction
both experimentally and theoretically [57–64], the convection is induced on the
perpendicular plane. Therefore the gravitational effects are unavoidable.

In the present study, we adopted a system made of two bulk phases of BZ
reaction medium and oleic acid (oil), and observed the flow near the interface of
the two phases by adding small particles for visualization. Since the interface is
perpendicular to the horizontal plane, the gravity does not affect the convection.
Due to the change in interfacial tension, Marangoni convection was induced
synchronizing with the chemical wave propagation. Near the interface between

23
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oil (oleic acid)

BZ medium
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(i) side view (ii) top view

(1 mm)

Figure 3.1: Schematic illustration on the experimental setup. Images are taken
from below [1].

the both phases, the strong convective flow was observed toward the oxidized
area, and two rolls were formed in the bulk phases. Numerical calculations based
on the reaction-diffusion-advection equations were also performed, and can well
reproduce the experimental results.

3.2 Experiments

All chemicals were analytical grade reagents and used without further purifi-
cation. An aqueous solution of ferroin, tris (1,10-phenanthroline) iron (II) sul-
fate, was prepared by mixing stoichiometric amounts of 1,10-phenanthroline
(C12H8N2) and ferrous sulfate (FeSO4) in pure water. The water was purified
with a Millipore-Q system. BZ medium, in the excitable state, contains 0.15
M sodium bromate (NaBrO3), 0.30 M sulfuric acid (H2SO4), 0.10 M malonic
acid (CH2(COOH)2), 0.03 M potassium bromide (KBr), and 5.0 mM ferroin
([Fe(phen)3]

2+). To visualize the convective flow, polystyrene beads (General
Science Corporation, 10 µm in diameter) were dispersed throughout the medium.
BZ medium and oleic acid were situated between two glass plates (clearance :
1.0 mm). A chemical wave was initiated using silver wire. The region near the
interface between BZ medium and oleic acid was observed from below by an
inverted microscope (Nikon DIA-PHOT-TMD), as schematically shown in Fig.
3.1.

3.3 Results

Figure 3.2 shows the convective flow that accompanied the propagation of a
chemical wave in BZ medium, where the flow of the tracer beads was visualized
as the accumulation of video frames over 1.0 s, together with image-processing
to compensate for the nonuniformity of the illumination [65]. On the front of
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Figure 3.2: Results of convective flow on the horizontal plane. The profiles of
streamlines in 1.0 s are shown at the intervals of 5.0 s. The upper phase is oleic
acid and the lower phase is the BZ medium; the chemical wave propagated from
left to right. Convective flow was generated towards the wave front on both
sides (Left column) Schematic illustrations are also given to show the direction
of convective flow (Right column) [1].
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Figure 3.3: Disappearance of convective flow due to an inhibitor, iodine, of the
chemical reaction. Pure oleic acid was replaced by oleic acid with iodine. The
chemical wave propagated from left to right in the bulk solution, but did not
reach the interface, and no convective flow was induced [1].

the chemical wave, large convective flow, parallel to the interface and opposite
the direction of movement of the chemical wave, was induced in both the water
and oil phases. Parallel flow in the same direction as the chemical wave was
observed on the back of the chemical wave at the interface. In both the water
and oil phases near the intersection of the chemical wave with the interface, the
flow sank into the bulk phases. Figure 3.3 shows the results of an experiment in
which iodine was added to the oil phase. In this experiment, no convective flow
was generated, despite the appearance of a chemical wave. Iodine is a potent
inhibitor of the BZ reaction [66, 67]. The iodine in the oil phase is expected
to inhibit wave generation near the interface, due to its diffusion from the oil
to the aqueous phase through the interface. Thus, the absence of convective
flow can be attributed to the failure of the chemical wave to propagate near the
interface. This convective flow is clearly caused by the difference in interfacial
tension between the oxidized and the reduced states [53].
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Figure 3.4: Results of numerical calculation. (a)The coordinate in the numerical
calculation. The results are for the lower half plane (y > 0). (b)Profiles of a
traveling chemical wave and the streamline in the bulk phase are shown. The
region with large V , i.e., the oxidized state, is drawn with blue. The experimental
trends have been thus represented in a qualitative manner. The parameters used
in this simulation are ρ = 1, η = 3, DU = DV = 0.5, ε = 0.04, f = 3, q = 0.0008,
k = 0.01, and δ = 0.5 [7].

3.4 Numerical calculation

For a numerical simulation, we adopted the 2-variable Oregonator, which has
often been used for reproducing BZ reaction. In many past studies, the pattern
in the settled BZ reaction medium is described as the reaction-diffusion equation
using Oregonator as a reaction term. However, in this system, the medium can
move. Therefore, we have to consider the dynamics of the medium, or field,
itself. Consequently, we adopted Navier-Stokes equation for the movement of the
medium. The medium is affected by the interfacial tension due to the change in
the chemical components coupled with BZ reaction. Here, Cartesian coordinates
are set so that the interface meets the x axis as shown in Fig. 3.4(a). Thus, we
can write as follows:

ρ

(
∂

∂t
+ v · ∇

)
v = η∇2v −∇p + Fi, (3.1)

∇ · v = 0, (3.2)

(
∂

∂t
+ v · ∇

)
U = F (U, V ) + DU∇2U, (3.3)
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(
∂

∂t
+ v · ∇

)
V = G (U, V ) + DV ∇2V, (3.4)

F (U, V ) =
1

ε

{
U(1 − U) − fV

U − q

U + q

}
, (3.5)

G (U, V ) = U − V, (3.6)

where ρ is the density, v is the velocity of the fluid, p is the pressure, η is the
viscosity, U and V are the concentrations of the represented chemical reagents,
and f , ε, and q is the parameters corresponding to the nature of BZ medium.
Here, interfacial tension is assumed to be as a volume force, which has non-zero
value in the area within the distance, δ, from the interface as is commented
in Chapter 2. The interfacial tension is proportional to the gradient of the
concentration of oxidized catalyst, V :

Fi =

{
k ∂V

∂x
ex (0 < y < δ),

0 (y > δ),
(3.7)

where k is a positive constant and ex is the unit vector in the x direction.
In Fig. 3.4(b), the profiles in the bulk phase calculated using the above

equations are shown. In the numerical calculation, SMAC method (Simplified
marker and cell method) was used [68]. Near the interface, convective flow is
induced toward the point where chemical wave touches the interface. The chemi-
cal wave near the interface propagates slower than that in the bulk phase. These
characteristics are qualitatively similar to those of the experimental results.

3.5 Discussion

Using the above-mentioned framework, the profile of interfacial tension can be
estimated. The x and y components of fluid velocity v are supposed to be u
and v, respectively. Here, the pressure term does not play an important role, it
is neglected for simplicity. The x component of eq. (3.1) is

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= η

(
∂2u

∂x2
+

∂2u

∂y2

)
+ Fi. (3.8)

As we approach the region near the interface, the velocity parallel to the interfa-
cial plane, u, is much greater than that perpendicular to the plane, v. Thus we
can neglect the term ρv∂u/∂y. The term η∂2u/∂y2 represents the diffusion-like
behavior in the y direction. The characteristic time for passing of the chemical
wave, ∆t, is about 10 s based on the experimental results. Therefore, the char-
acteristic depth of the region, ∆y, in which fluid moves attached to the interface
is calculated as

∆y ∼
√

η

ρ
∆t � 0.3 cm. (3.9)
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Figure 3.5: Spatial profile of various physics-chemical variables deduced from the
experimental results on convection generated by the BZ reaction, as in Fig. 3.2.
(a) Fluid velocity, u, parallel to the interface in the region near the interface. The
chemical wave propagates from left to right, and the origin is set at the position
of the wave front. (b) The gradient of interfacial tension, dγ/dx, calculated from
the fluid velocity profile. (c) Interfacial tension, ∆γ, calculated by integration
of (b). (d) The chemical wave as represented by a change in the color of the
solution that corresponds to the concentration of ferriin ([Fe(phen)3]

3+) [1].
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From the experiments, the viscosity of the BZ medium was around 1.1 × 10−2

g cm−1 s−1. In this calculation, the viscosity and density of BZ medium are
adopted. From now on, only the x component is considered, and the interfacial
tension is taken as the force working in the region within ∆y from the interface.
In this framework, the interfacial tension can be considered s a volume force,
and can be combined with an interfacial tension constant γ as follows:

∂γ

∂x
= Fi∆y. (3.10)

Since the chemical wave propagates at a constant velocity, c, the fluid velocity
profile, u, satisfies the differential equation:

∂u

∂t
= c

∂u

∂x
. (3.11)

From the experiment, the velocity of the chemical wave parallel to the interface is
c = 0.01 cms−1. Thus, eq. (3.8) can be simplified to a one-dimensional ordinary
differential equation:

ρ

(
c
du

dx
+ u

du

dx

)
= η

d2u

dx2
+ Fi. (3.12)

The fluid velocity profile near the interface was measured, and the results are
shown in Fig. 3.5(a). Using these results, the first-order derivative, the second-
order derivative, and the interfacial tension profile are calculated. The profile of
the gradient of the interfacial tension, dγ/dx, is shown in Fig. 3.5(b). Using this
profile, the profile of the interfacial tension, ∆γ, is calculated by integration, as
shown in Fig. 3.5(c). The profile of the chemical wave is shown in Fig. 3.5(d),
which was obtained from a quantitative analysis of the color in the reacting
solution. The profile of the chemical wave corresponds to the profile of the
interfacial tension, except for the slight differences in their peak positions and
widths. These differences are attributed to the effect of the convective motion
of the reacting solution. As in Fig. 3.2, the portion of the fluid in the reduced
state (low [Fe(phen)3]

3+) is pulled toward the front of the chemical wave. This
convective effect causes retardation of the phase of the oscillatory reaction of
the wave front, together with narrowing of the chemical wave. The change
in interfacial tension between the oxidized state and the reduced state is on
the order of 0.01 mNm−1, as in Fig. 3.5(c). This is about 1% of the value in
a previous report [53], where the interfacial tension was measured under the
condition that the BZ medium was stirred and the medium was uniform. In
the present experiment, we estimated the change in interfacial tension under
the condition of propagation of a chemical wave without stirring the reaction
medium. Since the interfacial tension on the front of the wave is opposite that
on the back, the net velocity may be damped. In the analysis adopted above, we
assumed that the system was two-dimensional, however, the actual system was
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the space between two glass plates. The fluid must be affected by the friction
from the glass plates, which should disturb the motion of the fluid. In addition,
there would be a rather large damping effect, i.e., flow in the aqueous phase
inevitably induces flow in the oil phase. The discrepancy in the amplitude of the
change in interfacial tension can be attributed to these effects. This estimation
of the interfacial tension profile from the fluid velocity profile might be useful in
an analysis of fluid dynamics.



Chapter 4

Spontaneous motion of a BZ
droplet

In this chapter, spontaneous motion of a small droplet of BZ reac-
tion medium on an oil phase is exhibited [1]. This can be regarded
as an experimental system where chemical energy is transduced into
mechanical energy. This spontaneous motion is related to the con-
vection inside the droplet [2].

4.1 Introduction

In the previous chapter, Marangoni convection at the interface between BZ
medium and oil driven by a repetitive change in interfacial tension is presented.
Near the interface between these two phases, strong convective flow is observed
toward the wave front, and two rolls are formed in both phases. Moreover,
the experimental results can be reproduced by a numerical calculation using
the Navier-Stokes equation coupled with a reaction-diffusion-advection equation
based on the Oregonator.

The convection coupled with the BZ reaction can be regarded as chemo-
mechanical energy transduction, but only the motion of the small particles for
visualization can be observed due to the convective flow. Therefore, we designed
the system where the macroscopic motion is induced by the chemo-mechanical
energy transduction in BZ reaction. In the past studies, Yoshida et al. have
exemplified the spontaneous deformation of the gel synchronized with BZ reac-
tion [69, 70], but the deformation is due to the characteristics of the gel. In the
present study, only by making the system size small, a droplet of BZ medium
can be driven by the convection due to the interfacial tension. In this chapter,
the experimental results and discussion on the mechanism are presented.

32
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Oleic Acid

Digital Video Camera

BZ medium (droplet)

Figure 4.1: Schematic illustration of the experimental setup. Images were
recorded from above [1].

4.2 Spontaneous motion of a BZ droplet on oil

phase

All chemicals were analytical grade reagents and used without further purifi-
cation. An aqueous solution of ferroin, tris (1,10-phenanthroline) iron (II) sul-
fate, was prepared by mixing stoichiometric amounts of 1,10-phenanthroline
(C12H8N2) and ferrous sulfate (FeSO4) in pure water. The water was purified
with a Millipore Milli-Q system. BZ medium, in the oscillatory state, contains
0.15 M sodium bromate (NaBrO3), 0.60 M sulfuric acid (H2SO4), 0.10 M mal-
onic acid (CH2(COOH)2), 0.03 M sodium bromide (NaBr), and 5.0 mM ferroin
([Fe(phen)3]

2+). To visualize convective flow, polystyrene beads (General Sci-
ence Corporation, 10 µm in diameter) were dispersed throughout the medium.
Using the experimental system shown schematically in Fig. 4.1, we observed the
motion of a 1.0-µl droplet of BZ medium floating on a layer of oleic acid.

Figure 4.2 shows the experimental results on the motion of a BZ droplet
floating on the surface of oleic acid. The spatio-temporal plot indicates a trans-
lational motion of the droplet accompanied by the propagation of a chemical
wave.

4.3 Convective flow inside the spontaneously-

moving droplet

For clarification of the nature of this motion, the x axis is set in the direction
of the spontaneous motion of the droplet, as shown in Fig. 4.3(a). The positive
direction is defined as that in which the droplet moves first. The chemical
wave propagated keeping the shape of a circle, and when the chemical wave
propagating in the negative x direction touched the interface, the droplet began
to move in the positive direction. After the entire droplet turned to the oxidized
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Figure 4.2: Spatio-temporal plot on the motion of a droplet of BZ medium with
the snapshots each 1.0 s. Each image on the dotted line is aligned with time to
show the translational motion of the droplet. The change in the shape of the
droplet was not observed [1].
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Figure 4.3: Experimental results regarding the convection inside a droplet of BZ
medium. (a) Two measured particles inside the droplet are shown as A and B.
(b) Time traces of the angles of the particles from the x axis (the direction of the
motion). The time trace of translational motion of the droplet is also shown [2].
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Figure 4.4: Schematic illustration on the mechanism of the spontaneous motion
of a BZ droplet [2].

state, it moved back in the negative direction as shown in Figs. 4.2 and 4.3(b).
To observe the characteristics of the convection inside the droplet, we mea-

sured the positions of the particles located near the interface of the droplet.
Figure 4.3(b) shows the time traces of the position of the center of the droplet
and the angles between the positions of the particles and x direction. The ori-
gin was set at the center of the droplet. As the droplet moved in the positive
direction, convective flow was observed in the counterclockwise direction on the
upper semicircle. In contrast, after the entire droplet reached the oxidized state,
convective flow was induced in the opposite direction, as schematically shown in
Fig. 4.4.

4.4 Discussion

We consider only the concentration of the catalyst near the surface. The BZ
reaction medium in the oxidized state has a higher interfacial tension than that
in the reduced state, since the distribution of the catalyst near the surface is
different [53].

First, as the chemical wave touches the interface of the droplet, convective
flow is induced by the difference in interfacial tension between the oxidized and
reduced states. This convective flow causes motion in the positive direction, since
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there is interaction between the aqueous and organic phases at the interface.
They exchange momentum, which results in the total translational motion [71].
Due to the convective flow, the oxidized catalyst at the interface accumulates
in the region where the chemical wave propagates last. As the chemical wave
finishes propagation and the entire droplet turns to the oxidized state, the con-
centration gradient of the oxidized catalyst near the interface causes backward
convection. The interfacial tension at regions with less catalyst is higher than
that in regions with more catalyst. Thus, the direction of the convective flow
is reversed, which results in the back-and-forth spontaneous motion of the BZ
droplet. It is noted that we can neglect the return to the reduced state, since
the time scale of the spontaneous motion is much shorter than the period of
chemical oscillation.

By the way, the motive force of the droplet is the gradient of interfacial
tension, which is proportional to the length of where the chemical wave touches
the interface between the BZ medium and oleic acid. Hence, the interfacial
tension is proportional to r, the system size:

|Fi| ∝ γr. (4.1)

On the other hand, the mass, M , is proportional to the cube of the system size:

M = ρr3. (4.2)

The acceleration α is, thus, proportional to r−2,

|Fi| = Mα, (4.3)

α ∝ γ

ρ

1

r2
. (4.4)

From the above discussion, the BZ droplet should move more as the size of
the system gets smaller. However, the chemical reaction is hard to activate,
when the system is smaller. Moreover, the time lag from when chemical wave
touches one side to when it touches the other side becomes shorter, so the droplet
moves less. Considering these factors, a system size of ∼ 1 mm is suitable for
observing the spontaneous motion of a BZ droplet.

4.5 Deformation of a droplet coupled with BZ

reaction

When the BZ droplet sinks down and touches the bottom of the petri dish, it
cannot move translationally, but rather becomes deformed. The experimental
results together with the schematic representation are shown in Fig. 4.5. In this
system, the droplet is stuck to the bottom and chemical energy is transduced
into deformation of the droplet rather than translational motion. In this phe-
nomena, the detailed mechanism has not yet been solved. Both experimental
and theoretical studies are needed to understand this phenomenon.
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oleic acid

BZ medium

observation

(Aluminum powder at the interface)
(a)
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1 mm(every 3.0 s)

oxidized statereduced state

(1.0 µl)

Figure 4.5: Spontaneous deformation of a droplet of BZ medium. (a) Exper-
imental setup. The composition of the BZ medium was the same as that in
the above-mentioned experiment on a floating BZ droplet. We placed a small
amount of BZ medium (1.0 ml) at the bottom of the oleic acid phase, and
observed with an inverted microscope (Nikon DIAPHOT-TMD). Since the BZ
medium was in an oscillatory state, a chemical wave was initiated spontaneously.
(b) Schematic representation on the experimental results from the side and be-
low. The arrows in the figures correspond to the motion of the interface observed
by placing aluminum powder at the interface of the BZ droplet. The chemical
wave propagated from the center, and motion of the interface could be seen
toward the wave front. After the entire droplet reached the reduced state, de-
formation of the droplet was observed. Periodic change in shape was, thus,
generated [4].



Chapter 5

Convective motion in
water-camphor system

In this chapter, the spontaneous motion of a camphor disk is firstly
introduced. Then, convective flow induced by the surface tension
gradient due to the camphor layer is investigated both experimen-
tally and theoretically. Some systems are also exemplified where the
spontaneous motion of a camphor disk is affected by the convective
flow.

5.1 Introduction

In the 19th century, Rayleigh reported that camphor grains floating on water
exhibit irregular motion called a “camphor dance” [72]. When a disk of camphor
is placed on water, it moves in one direction almost at a constant velocity. Such
motion is induced by the gradient in the surface tension [73]. Since the camphor
disk is almost circular and is placed on the water gently, the system can be
considered isotropic. The camphor molecule layer formed around the camphor
grain, which is axially symmetric. Due to the dissolution from the camphor
grain and sublimation from the camphor layer, the concentration of camphor
on the surface has a gradient. This gradient makes the resting state unstable,
and the disk begins to move at a constant velocity in a certain direction, thus
breaking axial symmetry [74].

When anisotropy is introduced to the shape of a camphor grain, its motion
can be easily controlled. For example, a camphor grain with the shape of a
“hat (ˆ)”, as shown in Fig. 5.1 (b)-ii, exhibits unidirectional motion, while one
with the shape of a “comma (,)” as shown in Fig. 5.1 (b)-iii or iv, exhibits a
rotational motion [73].

This translational and rotational motion is described for the position of the
center of gravity, r, and the rotational angle θ of the camphor grain:

m
d2r

dt2
= −kt

dr

dt
+ F, (5.1)

38
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camphor grainwater

(a) (b)
observation

i) ii)

iii) iv)

Figure 5.1: Spontaneous motion of a camphor grain on water. (a) Rough sketch
of the experimental setup. (b) i) A circular camphor disk on the aqueous phase
does not stand still, but rather spontaneously moves in one direction. ii) A
camphor grain shaped like a “hat (ˆ)” exhibits translational motion at a con-
stant velocity. iii and iv) A camphor grain shaped like a “comma (,)” exhibits
rotational motion [4].

I
d2θ

dt2
= −kr

dθ

dt
+ N, (5.2)

where m is the mass, I is the moment of inertia of the camphor grain, and
kt and kr are the viscosity resistance for translational and rotational motion,
respectively. F and N are the total force and torque working on the camphor
grain due to the surface tension gradient:

F =
∮

γndl, (5.3)

N =
∮

γ (l − r) × ndl, (5.4)

where the contour integral is executed along the boundary of the camphor grain,
γ is the surface tension, n is the normal vector, and (l − r) is the vector from the
center of mass. The surface tension is dependent on the density of the camphor
layer, which can be approximately calculated as follows:

γ(c) =
γ0

c + c̃
. (5.5)

The dynamics of the surface concentration of camphor, c, is described as a
reaction-diffusion equation:

∂c

∂t
= −kc + D∇2c + G (r, ω) , (5.6)

where the terms, −kc and D∇2c, correspond to the sublimation and surface
diffusion of the camphor layer, respectively. G (r, ω) is the term of development
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(a)

(b)
time

Figure 5.2: Typical numerical results on the spontaneous motion of a camphor
grain shaped like (a) a “hat (ˆ)” and (b) a “comma (,)” based on eqs. (5.1) -
(5.7). The parameters, m and I, are calculated from the shape of the grain by
letting the density as 0.1. The other parameters are kt = 103, kr = 0.1, D = 10,
k = 0.01, α = 10, c0 = 1, γ0 = 1, and γ̃ = 1 [4].

of the camphor layer from the grain:

G (r, ω) =

{
α(c0 − c) if the point is inside the grain.
0 otherwise

(5.7)

Numerical results based on the above equations are shown in Fig. 5.2.
When the shape of the grain is isotropic, N is cancelled and the grain exhibits

only translational motion. In contrast, when it is not isotropic, N has a finite
value, and it exhibits rotational motion as well as translational motion.

In the above discussion, convective flow is not concerned; however, we can
observe strong convective flow in the bulk phase. Therefore, in this chapter, we
will discuss the convective flow due to the surface tension difference induced by
the development of camphor molecular layer from the disk. We also report on
the influence of the convection on the spontaneous motion of a camphor disk in
the last section of this chapter.

5.2 Experiments

Camphor was obtained from Wako Chemicals (Kyoto, Japan). Water was first
distilled and then purified with a Millipore-Q system. A camphor disk (diame-
ter: 3 mm, thickness: 1 mm) was prepared using a pellet die set for FTIR. 3 ml
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Pt wire

Water with small particles

camphor disk

Figure 5.3: Schematic illustration on the experiments on the convective flow
induced by the camphor disk [3].

of water was poured into a quasi-one-dimensional polystyrene chamber (inner
length: 90 mm, width: 5 mm, depth: 9 mm, water level: 7 mm). The tem-
perature of the water chamber was adjusted to 293 ± 1 K with a thermoplate
(TP-80, AS ONE Co. Ltd., Japan). Plastic beads (DIAION, HP20S, relative
density: 1.01, Mitsubishi Chemical Co. Ltd., Japan) were mixed in the aqueous
phase to visualize the convective flow around the camphor disk. As shown in
Fig. 5.3, the camphor disk was fixed with a platinum wire and the motion of
the plastic beads were observed from side with a digital video camera and then
analyzed with an image-processing system.

5.3 Results

Figure 5.4 shows a streamline of the convective flow observed by the dispersion of
plastic beads in the aqueous phases with different viscosities. In this experiment,
the camphor disk was fixed with a platinum wire at the air/aqueous interface.
The streamlines for 1/3 s are shown in the both figures. With an increase in
viscosity, the velocity of convective flow clearly decreased.

5.4 Numerical calculation

In order to discuss on the convective flow in the water-camphor system, we made
numerical calculations using the following equations:

ρ

(
∂

∂t
+ v · ∇

)
v = η∇2v −∇p + Fi, (5.8)

∇ · v = 0, (5.9)
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Fixed Camphor

Water
level

Water
level

Convective flow

Fixed camphor disk

(a)

(b)

water

3 mm

Figure 5.4: Trajectories of the convective flow (analyzed time: 1/3 s), as visual-
ized with plastic beads (diameter: 100-200 µm) in a side view when a camphor
disk was placed on (a) the surface of an aqueous phase with (a) 5 mol l−1 and
(b) 10 mol l−1 glycerin. The viscosity is larger in the solution of (b) than that
of (a). The nature of convective flow on the left side of the camphor disk (data
not shown) was similar to that on the right side [3].
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Figure 5.5: Results of the numerical calculation. It is assumed that a camphor
disk is fixed at the origin, i.e., xc = 0. (a) The surface concentration of the
camphor layer and the flow velocity at representative points are shown. (b) To
clarify the magnitude of the flow velocity, the absolute value of the flow velocity
is shown. The parameters are ρ = 1, η = 1, D = 0.5, α = 0.1, c̃ = 1, c0 = 1,
γ0 = 1, δ = 0.5, r = 1, and b = 1 [3].
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(
∂

∂t
+ v · ∇

)
c = −αc + H(x, c) + D∇2c, (5.10)

where c is the surface concentration of the camphor, α is the rate constant of
sublimation, D is the surface diffusion constant of camphor, and H(x, c) is the
term of the supply of camphor from a grain. Letting that the position of the
camphor grain is x = xc and that the size is r, we can write

H(x, c) =

{
b(c0 − c) (|x − xc| < r),
0 (|x − xc| ≥ r),

(5.11)

where b is the rate constant of the supply of the camphor, and c0 is the saturated
surface concentration. The interfacial tension is

Fi =

{
∂γ
∂x

ex (0 < y < δ),
0 (y > δ),

(5.12)

γ =
γ0

c + c̃
, (5.13)

where γ0/c̃ denotes the interfacial tension of the pure water surface without any
camphor.

In Fig. 5.5, the numerical results are shown, when a camphor grain is fixed.
The numerical result qualitatively reproduces the experimental one, and we sug-
gest the convective flow may affect the spontaneous motion of a camphor grain
on water. When changing the viscosity in the numerical calculation, the veloc-
ity of the convective flow is decreased, which also reproduced the experimental
results (data not shown).

5.5 Effects of convective flow on the sponta-

neous motion

Figure 5.6 shows the camphor motion on water in a chamber with a saw-tooth-
shaped base. A chamber with a saw-tooth-shaped base made of polycarbonate
material was prepared by a fused deposition modeling process using TITAN
(Stratasys Corporation) at U-tec Corporation. The camphor moved over three
teeth under the present conditions. The maximum velocity in the leftward mo-
tion (∼ 60 mm s−1) was greater than that in rightward motion (50 mm s−1).
The velocity decreased when the camphor disk passed over the front edge of the
saw tooth while moving to the right, as marked by leftward arrows. In contrast,
the velocity increased when the camphor disk passed over the edge while moving
to the left, as marked by rightward arrows.

Figure 5.7 shows the results of a numerical calculation under a saw-tooth-
shaped boundary condition. Leftward flow is stronger than rightward flow near
the camphor disk (x = 0). Due to this stronger leftward flow, leftward motion
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Figure 5.6: Results of the experiments using the chamber with a saw-tooth-
shaped base. Right: Snapshots of camphor motion with a time interval of 0.2 s
(top view) in the chamber shown schematically (side view). Left: Time variation
of the velocity of a camphor disk. The analyzed data correspond to those in
the snapshots on the right. The positive (gray areas) and negative velocities
correspond to the motion to the right and left in the chamber. The rightward
and leftward arrows denote when the camphor disk passed over the front edge
of a saw-tooth blade from the right to the left and vice versa, respectively [3].
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Figure 5.7: The numerical results under a saw-tooth-shaped boundary condi-
tion. (a) The surface concentration of the camphor layer and the flow velocity
at the representative points are shown. (b) To clarify the magnitude of the
flow velocity, the absolute value of the flow velocity is shown. Leftward flow
is stronger than rightward flow near the camphor disk. Due to this stronger
leftward flow, leftward motion of the camphor disk is accelerated and rightward
motion is decelerated near the edges of the saw-tooth blades. The experimental
trends shown in Fig. 5.6 can be explained by this effect of the asymmetry in the
boundary condition. The parameters are the same as those used in Fig. 5.5 [3].
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Figure 5.8: Snapshots of the spontaneous motion of a circular ring and an encir-
cled camphor fragment under two different initial conditions. (a) Counterclock-
wise rotation of the circular ring (ring α) and clockwise rotation of the camphor
fragment when the camphor fragment was placed onto the water surface before
the ring (ring α). The white line denotes the trajectory of a point marked on
the circular ring. The location of the point in 1 is indicated by an arrow in each
snapshot. The trajectory of the camphor motion from the previous snapshot is
shown by a gray line. (b) Intermittent motion of the circular ring with a cam-
phor fragment when the circular ring was placed onto the water surface before
the camphor fragment. The time intervals between snapshots were (a) 3/2 s,
and (b) 3 s in 1-2 and 1/3 s in 2-5 [8].

of the camphor disk is accelerated and the rightward motion is decelerated near
the edges of the saw-tooth blades. The experimental results shown in Fig. 5.6
can be explained by this influence of the asymmetric boundary condition.

Next, the motion affected by the convection in two-dimensional system is
considered [8].

Three mobile rings (circular ring: ring α, ratchet-shaped ring: ring β, mirror
image of ring β: ring γ) were prepared with a plastic plate (thickness: 0.1 mm).
A camphor grain with the shape of comma (,) and a mobile ring were put onto
the water surface and the motion of the camphor grain was observed.

Figure 5.8 shows the snapshots of the synchronized spontaneous motion of a
circular mobile ring (ring α) and a camphor fragment depending on the initial
conditions. In Fig. 5.8(a), the camphor fragment moved clockwise at 2π/3 rad
s−1 on the water surface as an initial condition, and then the circular ring α
was placed on the water surface to surround the camphor fragment. Under
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Figure 5.9: Snapshots of the spontaneous motion of an asymmetric ring and an
encircled camphor fragment (time interval: 2.0 s). The shapes of the ring in (a)
(ring β) and (b) (ring γ) are mirror images of each other when they are placed
on the water surface. To visualize the motion of the circular ring, a point was
marked on the ring [8].

this condition, the camphor fragment continued to move clockwise at 2π/5 rad
s−1 and the circular ring moved counterclockwise at −π/30 rad s−1. In Fig.
5.8(b), the circular ring α was placed on the water surface as another initial
condition, and the camphor fragment was placed on inside the ring settling on
the water surface. Under this condition, the camphor fragment settled after
slow movement for 10 min without rotation. The circular ring then maintained
intermittent motion together with the camphor fragment for 30 min, i.e., settling
of both the ring and the camphor fragment and rapid motion of them were
repeated at an interval of ∼ 30 s.

Figure 5.9 shows the snapshots of the synchronized motion between an asym-
metric ring and a camphor fragment. In these experiments, a camphor fragment
was placed and then the ring was introduced to surround the fragment. In Fig.
5.9(a), the ring rotated in the direction opposite the rotation of the camphor
fragment. In contrast, the camphor fragment continued to rotate while the ring
almost did not move under the experimental condition in Fig. 5.9(b).

Figure 5.10(a) shows the trajectories of a camphor fragment, a circular ring,
and two talc powders for visualization on a water surface. In this experiment,
the initial conditions are the same as those in Fig. 5.8(a). Convective flow was
observed along the inner side of the ring in the same rotational direction as that
of the ring. Figure 5.10(b) shows the trajectories of the talc powders during
the resting state of the circular ring and the camphor fragment when the initial
conditions are the same as those in Fig. 5.8(b). Although the camphor fragment
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Figure 5.10: (a)Trajectories of the camphor fragment, ring, and two talc pow-
ders on the water surface. In this experiment, the initial conditions are the
same as those in Fig. 5.8(a), and talc powders (diameter: 3-7 µm) were ho-
mogeneously added to the water surface to visualize the convective flow driven
by the concentration difference of the camphor layer that developed from the
solid fragment. Convective flow was observed along the inner side of the ring
in the same rotational direction as that of the circular ring (time interval: 1/15
s). (b)Trajectories of the movements of talc powders to visualize the convective
flow generated around a camphor fragment in the resting state of the circular
ring and the camphor fragment on the water surface for a duration of 25 s. The
camphor grain exhibits intermittent motion as in Fig. 5.8(b) [8].
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was settled in the circular ring, convective flow circulated from the location of
the camphor fragment.

Figures 5.8(a) and 5.10(a) suggest that convective flow, where the direction is
opposite that of camphor rotation, is maintained around the camphor fragment
even after the circular ring is placed, and therefore the convective flow drives the
circular ring. By adding the ratchet to the circular ring, the effects of the flow
can increase or decrease depending on the direction of the ratchet as shown in
Fig. 5.9. In contrast, Figs. 5.8(b) and 5.10(b) suggest that the surface tension
around the camphor fragment reaches a balanced state because of the narrow
surface area within the circular ring and therefore the camphor fragment is at
rest immediately after the camphor fragment is placed inside the floating ring.
Next, convective flow increases since the local settling of the camphor fragment
increases the concentration gradient of the camphor layer around the camphor
fragment, while circulating flow around the camphor fragment may maintain this
settling, as seen in Fig. 5.10(b). When the concentration of the camphor layer
reaches a critical concentration, the excess camphor layer develops locally out
of the circular ring and the balanced state is destroyed. Therefore, the circular
ring may move rapidly in a certain direction.

These spontaneous motions of a camphor grain and an encircled ring are
clearly affected by the convection induced by the camphor grain. So far, we
cannot reproduce these phenomena by numerical calculation, because the system
is quite complicated, however, by reducing the effects of the convection, I hope
that we can clearly describe the effects of the convective flow.



Chapter 6

Spontaneous motion of a droplet
in the other systems

In this chapter, three examples where chemical energy is transduced
into mechanical energy, or motion [4]. The first example is the spon-
taneous motion of an alcohol droplet on the aqueous phase [10], the
second one is the spontaneous motion of an oil droplet on a glass
substrate in the surfactant solution [11], and the last one is the spon-
taneous motion of a phenanthroline disk on the aqueous phase [9].
These motions can be explained as the energy transduction from
chemical energy into mechanical energy through interfacial tension
in reaction-diffusion systems. Although the convective flow is not
explicitly considered in this chapter, the spontaneous motion can
be regarded as convective flow in a wide sense. Therefore, they are
introduced in this chapter.

6.1 Spontaneous motion in an alcohol-water sys-

tem

It is well known that alcohol has much lower surface tension than water, and
that mixtures of alcohol and water show many interesting phenomena, such as
“tears of wine” [75, 76]. When alcohol with a rather long hydrocarbon chain is
used, the oscillation of the surface tension is reported both experimentally and
theoretically [77–79].

A droplet of alcohol with a long hydrocarbon chain can be formed on water
for a rather long time. We adopted the pentanol as alcohol, and noticed the
formation of the droplet on aqueous phase. In this section, the spontaneous
motion of such a droplet is presented.

We added pentanol to water in a petri dish and observed the phenomena
inside it as shown in Fig. 6.1(a). Initially, the pentanol immediately mixes with
water. After a near-saturating amount of pentanol is added, the pentanol does
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Figure 6.1: Spontaneous motion of a pentanol droplet on water. (a) Rough
sketch of the experimental setup. Images are taken from above. (b) i) A small
droplet maintains a circular shape and moves irregularly. ii) A larger droplet
deforms into a “hat (ˆ)” and moves in one direction. iii) A much larger droplet
divides into smaller droplets and they move around [4, 10].

not mix any further with the solution, and a droplet is formed. The droplet does
not stand still but rather moves around, as shown schematically in Fig. 6.1 (b).

The feature of this spontaneous motion of a droplet is depending on the size
of the droplet. A small droplet maintains a circular shape and moves irregularly.
A larger droplet deforms like a “hat (ˆ)” shape and moves in one direction. A
much larger droplet divides into smaller droplets and moves around as shown
schematically in Fig. 6.1 (b). The experimental results are exhibited in Fig.
6.2.

This mode change in spontaneous motion depending on the size of the droplet
can be understood by considering the instability for the perturbation. Here,
the straight interface with a small perturbation is assumed and the following
two factors are considered. In order to simplify the treatment, we adopt the
approximation that the shape of the wave consists of parts of a circle as shown
schematically in Fig. 6.3.

The first factor is the process of the minimizing the alcohol-water interface.
Here, the strength of the force per unit length is let as γ1. In this case, the
radius of the circle, R, and the length of the interface per wave length, L, shown
in Fig. 6.3, are derived as

R =
A2 + (π/2k)2

2A
≈ π2

8Ak2
, (6.1)
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Figure 6.2: Spontaneous motion of an alcohol droplet on water-alcohol mixture.
(a) When a droplet is smaller, it moves irregularly. (b) When a droplet is larger,
it deforms and moves in one direction. The pentanol was mixed with ink in
order to visualize the droplet [10].

L = 4R arcsin

(
π/2k

R

)
≈ 2π

k

(
1 +

8A2k2

3π2

)
. (6.2)

Supposing that γ1 is proportional to ∂ [L/ (2π/k)] /∂A,

γ1 = a
∂

∂A

(
L

2π/k

)
= aAk2, (6.3)

where a is a constant.
The second factor is the concentration gradient of the pentanol at the sur-

face depending on the curvature of the water-alcohol interface. The pentanol
dissolves from the droplet to the surface of the aqueous phase, and then it is
sublimated to the air or dissolved to the aqueous phase. These processes can be
written as follows:

∂c

∂t
= D∇2c − α (c − ca) − β (c − cw) , (6.4)

where c is the surface concentration of the pentanol, D is the diffusion coeffi-
cient of pentanol on the surface, α is the evaporation rate of pentanol, β is the
dissolution rate of pentanol, ca is the concentration at the gas-liquid equilib-
rium and cw is the concentration at the surface-bulk equilibrium in the aqueous
phase. By assuming the steady state with the Dirichlet boundary condition
at the pentanol-water interface, i.e., c = c0 at the interface, the concentration
gradient can be calculated using modified Bessel functions for a certain curva-
ture. It is noted that the dissolution process of the pentanol from the droplet
corresponds to the adopted boundary condition in the steady state. In the con-
vex region, the concentration gradient is larger than that in the concave region,
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Figure 6.3: Schematic illustration of the tractable model. The perturbation
from the straight interface is considered. The sine wave with the wave number
k is approximated as the combination of the parts of circles [10].
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Figure 6.4: Schematic representation on the interfacial tension difference. As
the interface is assumed to be circular with the radius of R, the concentration

profile is (c0 − Γ) K0(
√

(α + β) /Dr)/K0(R̃) at the convex region (upper), and

(c0 − Γ) I0(
√

(α + β) /Dr)/I0(R̃) at the concave region (lower), where K and I
are modified Bessel functions. The interfacial tension is nearly proportional to
the gradient of the concentration at the interface [10].
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which means the perturbation of the interface tends to grow as schematically
shown in Fig. 6.4. As the force strength per unit length is γ2, it is described as

γ2 = b

[∣∣∣∣∣
(

dc

dr

∣∣∣∣∣
conv

)∣∣∣∣∣−
∣∣∣∣∣
(

dc

dr

∣∣∣∣∣
conc

)∣∣∣∣∣
]
, (6.5)

where dc/dr|conv is the concentration gradient perpendicular to the interface in
the convex region, dc/dr|conc is that in the concave region, and b is a positive
constant. By the analytic calculation, the following representation is obtained:

γ2 = b (c0 − Γ)

√
α + β

D

⎛
⎝K1

(
R̃
)

K0

(
R̃
) −

I1

(
R̃
)

I0

(
R̃
)
⎞
⎠ , (6.6)

where Γ = (αca + βcw) / (α + β), R̃ =
√

(α + β) /DR and I0, I1, K0, K1 are
modified Bessel functions.

Here, it is assumed that 0 < kA = δ 	 1. When k 	 1,

γ2 − γ1 ≈ −aAk2 +
8bΓAk2

π2
, (6.7)

and when k 
 1,

γ2 − γ1 ≈ −aAk2 +
8bΓAk2

π2 ln
[
8Ak2/

(
π2
√

(α + β) /D
)] . (6.8)

This means γ2 − γ1 < 0 when k 
 1, and γ2 − γ1 > 0 when k 	 1. By setting
γ2 − γ1 = 0 at k = kc, kc is obtained as follows:

kc =
π2

8δ

√
α + β

D
exp

[
3b (c0 − Γ)

2a

]
. (6.9)

When the droplet size is smaller than 2π/kc, the droplet is stable and does
not deform. On the other hand, when it is larger than 2π/kc, the fluctuation of
a certain mode grows and the droplet can separate into several smaller droplets.
Just when the droplet size is around 2π/kc, only one mode is destabilized. In
such a case, a droplet is deformed into the shape of a “hat(ˆ)” and moves in one
direction.

The mode change in spontaneous motion depending on the size of the droplet
can be understood based on the reaction-diffusion equations. The results can
predict the experimental trends when the temperature or concentration of the
aqueous phase is changed. In fact, such experiments have been performed, and
the theoretical prediction has been confirmed, though the experimental data are
not shown in this thesis.

Thus, in this framework, the convective flow is not considered, but the strong
convective flow is confirmed in the experiments. By considering the convective
flow, various modes of spontaneous motion may be achieved.
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Figure 6.5: Spontaneous motion of an oil droplet on a glass substrate. (a)
Schematic illustration on the experimental setup. (b) Snapshots of an oil droplet
from side every 1/3 s. The droplet moves spontaneously almost at a constant
velocity in one direction [4, 84].

6.2 Spontaneous motion in an oil-water system

There have been some reports on reactive droplets on a glass plate [80, 81].
However, such reactive droplets cannot cross their own trails; i.e., they show a
self-avoiding trajectory. On the other hand, as a droplet of nitrobenzene includ-
ing iodine (I2) and saturated potassium iodide (KI) is put onto a glass substrate
in an aqueous solution of surfactant such as stearyltrimethylammonium chloride
(STAC) solution, the oil droplet exhibits ameba-like motion [82, 83]. When the
oil droplet is put onto the long rectangular glass substrate, the droplet goes back
and forth as shown in Fig. 6.5 [84].

We have also experimentally observed that the chemo-sensitive motion of
an oil droplet on a glass substrate treated by acid. It was found that an oil
droplet can show turning back motion, stopping motion, and slowing motion
when the substrate was partially treated with acid as shown in Fig. 6.6. With
detailed observations, however, it turned out that the motion of an oil droplet
severely depends on the condition of the substrate, which was hard to control
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experimentally.

Here, the mechanism of the droplet motion is considered. The oil droplet
moves dissolving adhered STA+ ions on the glass substrate. Since STA+ and I−3
in the organic phase make an ion-pair, a difference in interfacial energy arises
from the difference in the concentration of STA+ ions on the glass surface be-
tween the front and back of an oil droplet. Thus, the condition of the glass
surface on which STA+ ions aggregate plays an important role in the motion of
an oil droplet. The stopping and slowing of an oil droplet can be attributed to
the effect of inertia, which moves the oil droplet to the area where there are not
enough STA+ ions on the glass surface to produce a driving force. Furthermore,
the dependence of the droplet motion on the condition of the acid-treated region
can be attributed to the difference in the number of adsorption sites on the glass
surface.

Based on the above discussion, we make a simple one-dimensional model.
The x axis is set along the surface of the glass substrate. The droplet proceeds
on a line with stretching and shrinking. The positions at the both ends of the
droplet are set as x1(t) and x2(t), where x1 < x2. The concentration of STA+

ions on the glass surface is set as u(x, t). The dynamics of x1 and x2 are written
as follows:

ρ
d2x1

dt2
= −µ0

dx1

dt
− ∂E

∂x

∣∣∣∣∣
x=x1

− β(r0)(x1(t) − x2(t) − r0), (6.10)

ρ
d2x2

dt2
= −µ0

dx2

dt
− ∂E

∂x

∣∣∣∣∣
x=x2

− β(r0)(x2(t) − x1(t) + r0), (6.11)

where ρ, µ0, and r correspond to the surface density, viscosity, and the diameter
of the oil droplet, respectively. β(r) is the elastic constant of the oil droplet with
the diameter r0 in the equilibrium state [11]:

β(r) =
2γw

r
. (6.12)

E(u) is the surface energy of the glass surface modulated by the STA+ ions
adsorbed on it:

E(u) =
e0

1 + aum
, (6.13)

where e0, a and m are the positive constants. On the other hand, the dynamics
of u is written as follows:

∂u

∂t
= d

∂2u

∂x2
+ F (u, x, x1(t), x2(t); 0), (6.14)

where d is the diffusion constant of the STA+ ions molecules on the glass sur-
face. F (u, x, x1(t), x2(t); 0) corresponds to the desorption of the STA+ ions
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Figure 6.6: Experiments on spontaneous droplet motions. A 15-µl oil droplet
was put onto a narrow acid-treated glass substrate. Images from the experiment
and a spatio-temporal image of oil-droplet motion are shown. An oil droplet
showed (a) shuttling motion, (b) intermittent shuttling motion, (c) stopping,
and (d) slowing [11].
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Figure 6.7: Schematic diagram of the model of oil-droplet motion on a glass
surface. The lower arrow represents the spatial coordinate, where 0 to 0 and
 − 0 to  are treated with acid. u0 and u1 are the saturated concentration of
the STA+ ions on the glass substrate on bare and acid-treated glass substrate,
respectively. The oil droplet is modeled as two lines (perpendicular to x-axis,
whose mass density is σ, connected to a spring with an elastic constant of β(r0)
[11].

from the glass surface to the oil droplet. For this term, we assume the following
description:

F (u, x, x1(t), x2(t); 0) =

⎧⎪⎨
⎪⎩

−k1u, (x2(t) ≤ x ≤ x1(t))
k2(u0 − u), (0 < x < x2(t), x1(t) < x <  − 0)
k3(u1 − u), (0 < x ≤ 0,  − 0 ≤ x < )

(6.15)
where k1, k2, u0, u1,  and 0 are the positive constants that correspond to
the desorption rate, adsorption rate, saturated concentration of the STA+ ions
on the bare glass surface, that on the acid-treated glass surface, the length of
the glass substrate, and the length of the glass substrate treated with acid,
respectively (see Fig. 6.7). The initial and boundary conditions are set as

∂u

∂x
(t, 0) =

∂u

∂x
(t, ) = 0, (6.16)

u(0, x) =

{
u0, (0 < x <  − 0)
u1, (0 < x ≤ 0,  − 0 ≤ x < )

(6.17)

x1(0) = x10, x2(0) = x20(< x10),

dx1

dt
(0) =

dx2

dt
(0) = 0. (6.18)

To normalize eqs. (6.10) - (6.18), we introduce the following dimensionless
variables:

U =
u

u0
, X1 =

x1


, X2 =

x2


, X =

x


, T = k1t. (6.19)

We then derive the following dimensionless equations from eqs. (6.10) - (6.18):

d2X1

dT 2
= −µ

dX1

dT
− ∂E

∂X

∣∣∣∣∣
X=X1

− B(R0)(X1(T ) − X2(T ) − R0), (6.20)
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d2X2

dT 2
= −µ

dX2

dT
− ∂E

∂X

∣∣∣∣∣
X=X2

− B(R0)(X2(T ) − X1(T ) + R0), (6.21)

E(U) =
E0

1 + AUn
, (6.22)

∂U

∂T
= D

∂2U

∂X2
+ F (U, X, X1(T ), X2(T ); L0), (6.23)

F (U, X, X1(T ), X2(T ); L0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−U, (X2(T ) ≤ X ≤ X1(T ))
K2(U0 − U), (L0 < X < X2(T ),

X1(T ) < X < 1 − L0)
K3(U1 − U), (0 < X ≤ L0, 1 − L0 ≤ X < 1)

(6.24)
with the following initial and boundary conditions:

∂U

∂X
(T, 0) =

∂U

∂X
(T, 1) = 0, (6.25)

u(0, x) =

{
1, (L0 < X < 1 − L0)
U1, (0 < X ≤ L0, 1 − L0 ≤ X < 1)

(6.26)

X1(0) = X10, X2(0) = X20(< X10),

dX1

dT
(0) =

dX2

dT
(0) = 0, (6.27)

where
µ =

µ0

σk1
, E0 =

e0

σk2
1

, R0 =
r0


,

B(R0) =
2β(r0)

σk2
1

=
W

R0
, W =

2γw

σk2
1

, A = aun
0 ,

D =
d

k12
, K2 =

k2

k1
, K3 =

k3

k1
, U1 =

u1

u0
,

L0 =
0


(< 1), X10 =

x10


, X20 =

x20


.

We performed a numerical simulation using eqs. (6.20) - (6.24) under the
initial and boundary conditions shown in eqs. (6.25) - (6.27).

We only changed the parameter U1, while all of the other parameters were
fixed. It is noted that U1 corresponds to the saturated concentration at the region
treated by acid. Spatio-temporal plots of the droplet given by the numerical
calculations are shown in Fig. 6.8.

When U1 is small enough, i.e., it is difficult for STA+ ions to adsorb to the
acid-treated region, the oil droplet moves back and forth inside the untreated
region, as shown in Fig. 6.8(a). As U1 increases slightly, the oil droplet does
not turn back quickly but rather rests at the border between the acid-treated
region and the untreated region. After a brief stop, it begins to move backward,
and this intermittent shuttling motion is repeated as shown in Fig. 6.8(b). For
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Figure 6.8: Spatio-temporal plots of the results by the numerical calculations
using eqs. (6.20) - (6.27). Only the parameter U1 was changed as (a) U1 = 0.65,
(b) U1 = 0.658, (c) U1 = 0.68 and (d) U1 = 0.75. The other parameters are
µ = 0.2, R = 0.05, E0 = 5 × 10−5, A = 1, m = 4, B(R) = 2, D = 2.5 × 10−7,
L0 = 0.25, U0 = 1, K2 = 1, K3 = 1, X10 = 0.23, and X20 = 0.27. The thick
lines along the x axis correspond to the regions treated with acid [11].
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much larger U1, the oil droplet does not go back any more, as shown in Figs.
6.8(c) and (d). The oil droplet goes into the acid-treated region and it moves
on very slowly or stops according to the value of U1.

In this system, the difference in the chemical energy of the dissolution of the
surfactants between the water phase and oil phase is transduced into motion.
We hope that we can discuss the efficiency of the chemo-mechanical energy
transduction using the developed model.

6.3 Spontaneous motion coupled with a chem-

ical reaction

1,10-phenanthroline (C12H8N2) is used for making the ferroin, which is often
used as a catalyst of BZ reaction. Putting phenanthroline and ferrous sulfate
(FeSO4) into pure water, they make a complex at a ratio of 3:1. A phenanthroline
molecule has hydrophobic parts and hydrophilic parts, and it has the surface
activity like camphor. Thus, as a disk of phenanthroline is put onto the water,
it moves spontaneously. In this section, we report the spontaneous motion of
a phenanthroline disk on pure water or ferrous sulfate solution, and the mode
change of the spontaneous motion according to the change in the concentration
of FeSO4.

When the concentration of FeSO4 is low enough, the uniform motion of the
grain was observed. With the increase in the concentration of FeSO4, the uni-
form motion changed to intermittent motion (periodic change between motion
and rest) and its period and resting time increased. However, this intermittent
motion reverted to uniform motion and the velocity increased with a further
increase in [FeSO4]. The mechanism of this characteristic motion depending on
[FeSO4] is discussed in relation to the surface tension, which depends on the
concentration of a surface-active layer composed of 1,10-phenanthroline and a
tris-(1,10-phenanthroline) iron complex ([Fe(phen)3]

2+, ferroin) as the driving
force and the solubility of ferroin in the aqueous phase.

Figure 6.9 shows the snapshots for (a) uniform motion ([FeSO4]= 0 mol
l−1), (b) intermittent motion ([FeSO4= 5 mmol l−1), and (c) uniform motion
([FeSO4= 100 mmol l−1) of the spontaneous motion of the phenanthroline disk
together with the time variation of its velocity. As for the uniform motion, a red
colored layer, which was composed of ferroin, was remained on the trajectory
of the motion. On the intermittent motion, the density of the red colored layer
around the disk increased at the resting state, but the resting state was changed
to the rapid motion when the density of the red colored layer reached to a critical
value, as seen in Fig. 6.9(b).

Figure 6.10 shows the mode diagram of the spontaneous motion of the
phenanthroline disk depending on [FeSO4]. The velocity of uniform motion
decreased with the increase in [FeSO4], and changed to intermittent motion
(periodic change between motion and rest) at [FeSO4] =3 mmol l−1. Here, we
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Figure 6.9: Snapshots of the spontaneous motion of a phenanthroline disk on
the FeSO4 aqueous solution at different concentrations ((a) 0, (b) 5, and (c)
100 mmol l−1) (top view) together with the time variation of the velocity of the
phenanthroline disk [9].
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Figure 6.10: The mode of the spontaneous motion of a phenanthroline disk
depending on [FeSO4]. The velocity of uniform motion (0 ≤ [FeSO4] ≤ 2, 30 ≤
[FeSO4] ≤ 100 mmol l−1) including the ambiguous region (11 ≤ [FeSO4] ≤ 20
mmol l−1), and the frequency of intermittent motion (3 ≤ [FeSO4] ≤ 10 mmol
l−1) are plotted [9].

determined as the ambiguous motion if the velocity of the motion was lower than
1 mm s−1 and the resting time of the intermittent motion was higher than 1 min.
The frequency of intermittent motion decreased and the resting time increased
with the further increase in [FeSO4], and the phenanthroline disk almost settled
at [FeSO4] = 10 mmol l−1. However, the uniform motion reverted again over
[FeSO4] = 30 mmol l−1, and the velocity increased with the further increase in
[FeSO4].

The mechanism of this spontaneous motion can be described as a reaction-
diffusion system with convection. The phenomenon of the spontaneous motion
of a phenanthroline disk is interesting because the formation of the reaction
product and the convective flow can be easily observed. We hope that the
system will be designed where the spontaneous motion of a phenanthroline disk
and oscillation or spatio-temporal pattern formation in BZ reaction can interact
with each other, and create a novel spatio-temporal pattern.
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Chapter 7

Slowing and stopping of a
chemical wave in a narrowing
canal

In Part III, the geometrical effects of boundary in reaction-diffusion
systems are exemplified. In this chapter, the slowing and stopping
of the chemical wave in the narrowing glass capillary is presented in
BZ reaction. The mechanism is theoretically analyzed related to the
surface-volume ratio.

7.1 Introduction

It has been claimed that the essence of the neuronal system can be understood
in terms of a simple differential equation as a kind of reaction-diffusion systems
[31–33]. Thus, a neuronal pulse is a manifestation of a dissipative structure
generated in nonequilibrium open systems. Several experimental and theoretical
studies have been undertaken on the reaction-diffusion systems as a model of
the neuronal system. It is known that the FitzHugh-Nagumo equation can well
reproduce the features.

In such studies, the Belousov-Zhabotinsky (BZ) reaction is often used as an
experimental model of the reaction-diffusion systems. In this system, chemical
waves propagate at a constant velocity and amplitude, and thus exhibit the
characteristics similar to those of pulses in nerve cells. The characteristics of
the BZ reaction can be well described using a numerical model, the Oregonator.
The Oregonator model has a mathematical structure similar to the FitzHugh-
Nagumo equation. Therefore, to better understand information processing in
the neuronal system, it may be useful to compare it with the chemical waves in
the BZ reaction, although there exists a fundamental difference between them:
a neuronal pulse propagates on the two-dimensional tubular membrane and a
chemical wave propagates in the three-dimensional bulk phase.

67
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Figure 7.1: Schematic representation of the experimental system. The capillary
was arranged horizontally and observed from above by a CCD camera [5].

Over the past decade, the behavior of the chemical waves in a narrow space
has been studied using a gel system [34,35], a droplet system [36], and a bead sys-
tem [37,38]. Tóth and co-workers reported that a chemical wave does not prop-
agate when it expands from a thin capillary to the bulk solution. They claimed
that a chemical wave can perform information processing [85,86]. Masere et al.
performed experiments on the propagation of a chemical wave in a vertical cap-
illary. They discussed their experimental results with special emphasis on the
gravitational effect [87]. In these previous studies, the features of the chemical-
wave propagation in a narrow straight capillary with a constant diameter were
examined.

In this chapter, we show that a chemical wave slows, stops, and then disap-
pears in a narrowing glass capillary. We discuss this phenomenon in term of the
surface-volume ratio for the reaction field, i.e., the surface can seriously affect
chemical wave propagation.

7.2 Experiments

All chemicals were analytical-grade reagents and used without further purifi-
cation. An aqueous solution of ferroin, or tris (1,10-phenanthroline) iron (II)
sulfate, was prepared by mixing stoichiometric amounts of 1,10-phenanthroline
(C12H8N2) and ferrous sulfate (FeSO4) in pure water. The water was puri-
fied with a Millipore-Q system. BZ medium contained 0.35 M sodium bromate
(NaBrO3), 0.39 M sulfuric acid (H2SO4), 0.12 M malonic acid (CH2(COOH)2),
0.05 M sodium bromide (NaBr), and 4.0 mM ferroin (Fe(phen)2+

3 ) (excitable
condition). We left the BZ solution for about 10 min and then stirred it to
diminish the formation of bubbles in the solution.

We prepared a glass capillary (borosilicated glass, length: 100 mm, inner
radius: 0.75 mm, Sutter Instrument Co.) with a decreasing width by pulling
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a straight capillary with a Micropipette Puller (Model P-97/IVF, Sutter In-
strument Co.). The both ends of the capillary were open and the gradient of
the inner radius was 0.036. In order to make easier to show the experimental
results, the x axis is set as shown in Fig. 7.1. The capillary was immersed
in the BZ medium, fulfilled with the BZ medium inside it, and then situated
on a horizontal plate for observation with a CCD camera (Digital Microscope
Unit, Keyence). As soon as bubbles formed inside the capillary, we stopped the
observation: the data reported in the present study are only from the experi-
mental series without bubble formation. All the experiments were performed at
the room temperature (20 ± 3 ˚C). Images were recorded on a videotape and
analyzed by an image processing system.

7.3 Results

A chemical wave was initiated at the wider end by a silver wire without distur-
bance. A chemical wave propagating toward the narrower end slowed, stopped,
and eventually disappeared. The oxidized solution in the capillary then reverted
to the reduced state. The spatio-temporal plot of images of the capillary along
the long axis is shown in Fig. 7.2(a), and the snapshots in every 5.0 s are shown
in Fig. 7.2(b). They clearly show that the velocity of the chemical wave grad-
ually decreases before it stops. This feature was seen in every chemical wave
initiated. With each subsequent wave, the position at which the chemical wave
stopped tended to shift slightly toward the narrower end. Figure 7.3 shows the
temporal change in the position (a) and velocity (b) of the chemical wave, and
the velocity depending on the position (c). From the observation, the point
where the chemical wave stops propagation, xs, was 2.7 ± 0.2 mm. We have
confirmed the reproducibility of the experimental trends through a number of
repeated experiments.

7.4 Discussion

We discuss here the characteristic change in the manner of wave propagation in
a glass capillary. According to an analysis with the Oregonator, the velocity of
the chemical wave in the BZ reaction can be written as [88]:

v ≈ 1

2
(k5HAD)1/2 , (7.1)

where H is the concentration of hydrogen ion, A is the concentration of bromate
ion, D is the diffusion constant of the activator, and k5 is the rate constant of
the component reaction, which is introduced as an autocatalytic process by sum-
mation of the two elemental processes in the Oregonator model [88]. Equation
(7.1) is valid for a plane and steady traveling wave but does not apply to a wave
that shows a change in velocity. By assuming that the concentration dependence
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Figure 7.2: Experimental results on the propagation failure in a narrowing glass
capillary. The chemical wave propagated from the left (wider end) to the right
(narrower end). (a) Spatio-temporal plot of the chemical wave propagation. (b)
Snapshots with an interval of 5.0 s. When the wave propagated to the narrower
region, it slowed, stopped, and then disappeared. The darker and brighter areas
correspond to the reduced and oxidized states, respectively [5].



Chapter 7 Slowing and stopping of a chemical wave 71

 0  2  3  4

time  (s)
0 100 200 300

p
o
si

ti
o
n
 x

 (
m

m
)

2

1

3

0

0

0.01

0.03

0.02

v
el

o
ci

ty
 (

m
m

 s
-1

)

10

0.01

0.03

0.02

v
el

o
ci

ty
 (

m
m

 s
-1

)

0.04

position x (mm)

(a)

(b)

(c)

1st
2nd
3rd
4th
5th

Figure 7.3: Features of the propagation failure of chemical waves in the experi-
ments as shown in Fig. 7.2. (a) Temporal changes in the position and (b) velocity
of chemical waves. (c) The relationship between position and velocity [5].



72 Chapter 7 Slowing and stopping of a chemical wave

0 0.001

0

0.5

1st
2nd
3rd
4th
5th

gradient : 450

v2

1
 −

b
a
 (

x 0
 −

 x
)

∼

(mm2 s-2)

Figure 7.4: Plot of v2 vs 1− b̃/{a(x0 − x)}. Five chemical waves were measured
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gradient was calculated to be 450 mm−2 s2 [5].

of the local velocity along the capillary is also given in a similar way, we sim-
ply adapt eq.(7.1) to interpret the experimental trends in a semi-quantitative
manner.

The x axis is set in the direction of wave propagation. We describe the inner
radius of the glass capillary, r, by assuming it as a part of a cone:

r = a(x0 − x), (7.2)

where a corresponds to the gradient of the inner radius of the glass capillary,
and x0 is the position that would be the top of the cone.

The concentration of hydrogen ion, H , can be decreased by the effect of the
glass surface of the capillary. It is noted that H is the average concentration
over the cross section, and that the effect on the hydrogen concentration by
the glass surface is effective only near the surface. Amemiya et al. reported
that the effective hydrogen ion concentration is not homogeneous in the porous
glass system [89]. The sodium ions connected to the SiO−

2 groups could be,
thus, replaced by hydrogen ions, which causes a decrease in the concentration of
hydrogen ions near the glass surface. We assume that this effect is proportional
to the surface-volume ratio:

Heff = H
(
1 − b

2πr

πr2

)
≡ H

(
1 − b̃

r

)
, (7.3)

where b is a positive constant that reflects the effect of the glass surface. Al-
though, at present, it seems difficult to evaluate b from an experiment, as a
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Figure 7.5: Relationship between position and velocity of a chemical wave based
on the theoretical discussion by eq.(7.4). The parameters used here are deter-
mined from the experiments [5].

future subject, it may be of value to try to measure the change in the chemi-
cal environment near the surface. b̃ (= 2b) is a positive constant introduced to
simplify the equation.

From the above equations, we can derive the relationship between the posi-
tion and velocity:

v = v0

(
1 − b̃

a(x0 − x)

)1/2

, (7.4)

where v0 is the velocity of the chemical wave without any effects from the glass
surface. By letting v = 0 in eq.(7.4), we can determine the position, xs, where
the chemical wave stops:

xs = x0 − b̃

a
. (7.5)

Equation (7.4) can also be written as:

(
v

v0

)2

= 1 − b̃

a(x0 − x)
. (7.6)

From the experimental results, the parameters were determined to be xs = 2.7
± 0.2 mm, x0 = 5.5 mm, and a = 0.036. Using these values, we plotted the
relationship between v2 and 1− b̃/{a(x0 − x)} in Fig. 7.4, where b̃ is calculated
as b̃ = 0.20±0.01 using eq. (7.5). The results show a linear relationship between
these two values. By linear fitting, the gradient was calculated to be 450 ± 50
mm−2 s2. This value corresponds to 1/v2

0, indicating that v0 = 0.047 ± 0.003
mm s−1, which roughly corresponds to the wave velocity obtained through the
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experiment using a wide capillary (0.06 ± 0.01 mm s−1). Using this value, the
plot between v and x is shown in Fig. 7.5. The relationship between v and x in
the experiments, as shown in Fig. 7.3(c), was well reproduced in a quantitative
manner. The velocity profile near the point where a chemical wave stops can be
thus explained.

In the above discussion, the decrease in the effective concentration of the
hydrogen ion, Heff , near the glass surface seems to be induced by the adsorption
by the SiO−

2 groups on the glass surface. With time, this substitution continues,
and the effect of the glass surface on the concentration of the hydrogen ion
decreases. This may be the cause of the slight shift in the position at which the
chemical wave stops.

As we performed the experiments under the oxygen atmosphere, it is possi-
ble that the oxygen disturbs chemical-wave propagation. On this problem, we
carried out the observation using a straight capillary with open ends, and con-
firmed that absorption of the oxygen from an open end has negligible effect on
the manner of wave propagation. Therefore, it is most probable to expect that
the significant factor is the absorption of the hydrogen ion to the inner wall of
the glass capillary.



Chapter 8

Alternative stopping of a
chemical wave in a
photosensitive BZ reaction field

In Chapter 7, the chemical waves of BZ reaction in a narrowing glass
capillary was investigated, and it is suggested that the effects of the
glass surface is important. In this chapter, therefore, the narrowing
reaction field is achieved using light illumination in photosensitive
BZ reaction in order to avoid the effects of the glass. Then, it is
observed that the chemical wave disappears alternatively at a certain
light intensity.

8.1 Introduction

In the previous chapter, the natures of the chemical wave in the narrowing glass
capillary were investigated. When a chemical wave goes to the narrower area,
it propagates more and more slowly, and finally it stops and disappears. The
mechanism of the slowing and stopping of the chemical wave can be explained
as the effects of the glass surface, however, the physical chemistry near the glass
surface is so difficult that the characteristics of the reaction diffusion system are
hidden.

In this chapter, we made the narrowing reaction field using photosensitive
BZ reaction. As written in Chapter 2, using Ru-catalyst, the BZ reaction has
photosensitivity [42–44]. The mechanism of photosensitivity is considered as
follows: Ruthenium catalyst absorbs light and is excited. When the excited
catalyst is relaxed, it produces the bromide ion, which is the inhibitor of the BZ
reaction. Therefore, in the region where light is illuminated, the inhibitor of BZ
reaction increases.

Using a slide projector and a filter with a certain shape, we can achieve the
reaction field with an arbitrary shape. In this chapter, chemical wave propaga-
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Figure 8.1: Schematic representation of experimental setup.

tion on the V- and X-shaped reaction fields as shown in Fig. 8.1 are investigated.
On such reaction fields, the interesting phenomena on chemical wave propaga-
tion can be observed by changing the brightness of light irradiation. At a certain
brightness, the positions at which chemical waves stop propagation change every
two waves. In this chapter, the results of experiments and simple discussion are
presented.

8.2 Experiments

All chemicals were analytical-grade reagents and used without further purifica-
tion. The water was purified with a Millipore-Q system. The BZ medium con-
tained 0.45 M sodium bromate (NaBrO3), 0.30 M sulfuric acid (H2SO4), 0.20
M malonic acid (CH2(COOH)2), 0.05 M sodium bromide (NaBr), and 1.7 mM
ruthenium bipyridyl chloride (Ru(bpy)3Cl2) (excitable condition). We mixed
the chemical compounds except the ruthenium catalyst, and then the ruthe-
nium catalyst solution was added to the solution waiting for around 4 minutes.
The solution was heated till the first chemical wave was observed. Cellulose-
nitrate membrane filters (Advantec, A100A025A with a pore size of 1 µm) were
soaked in the BZ solution. The soaked membrane was gently wiped with a piece
of filter paper to remove excess solution and placed on a piece of slide glass.
The surface of the membrane filter was completely covered with around 1 ml
of silicone oil to prevent it from drying and to protect it from the influence of
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Figure 8.2: Experimental results on the reaction field with the triangular shape
as in Fig. 8.1(a). Spatio-temporal plots achieved by aligning the images on the
white broken line on the upper picture with time are shown.

oxygen. The experiments were carried out at room temperature. Using a slide
projector and the OHP films with a certain shape printed, we could obtain the
clear image on the membrane filter. Chemical waves were prevented from prop-
agating in the brighter area, and they can propagate only in the darker area. We
made the series of the experiments by changing the light intensity in the brighter
region. The features of chemical wave propagation were recorded from above
through a blue filter (Asahi Techno Glass, V-42) using a digital video camera.
The schematic representation of the experimental setup is shown in Fig. 8.1.

8.3 Results

When the shape of the reaction field was triangular as shown in Fig. 8.1(a),
the results of the chemical wave propagation are shown in Fig. 8.2. The chemi-
cal wave propagating from the broader region disappeared as they came to the
narrower region. When the light intensity in the brighter area was smaller, the
chemical waves disappeared at the same point as shown in Fig. 8.2(a). When it
was larger, on the other hand, the points at which chemical waves disappeared
changed every two wave as in Fig. 8.2(b). It was noted that the disappear-
ing points sometimes changed every one in three or in more complicated way;
however these phenomena were ambiguous and could not be observed stably.
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Figure 8.3: Experimental results on the reaction field with the combination of
two triangles as in Fig. 8.1(b). Spatio-temporal plots achieved by aligning the
images on the white broken line on the upper picture with time are shown.

When the shape of the reaction field was the combination of two triangles as
shown in Fig. 8.1(b), the results of the chemical wave propagation are shown in
Fig. 8.3. When the light intensity in the brighter area was smaller, all chemical
waves propagated through the narrowest region as shown in Fig. 8.3(a). As the
light intensity was slightly larger, every second wave could propagate through
the narrowest region as in Fig. 8.3(b). When it was even larger, all chemical
waves disappeared and failed propagation through the narrowest region as in
Fig. 8.3(c).

8.4 Discussion

The Oregonator model is modified for photosensitive BZ reaction [90–92]:

∂U

∂t
=

1

ε

{
U(1 − U) − (fV + A)

U − q

U + q

}
+ DU∇2U, (8.1)

∂V

∂t
= U − v + DV ∇2V, (8.2)

where U and V are the dimensionless variable that correspond to the concentra-
tions of the activator (HBrO2) and the oxidized catalyst ([Ru(bpy)3]

3+), respec-
tively. f , ε and q are the positive parameters that determine the nature of the
BZ reaction, DU and DV are the diffusion constants for the activator and the
oxidized catalyst, and A is the variable that is proportional to the light intensity.

For simplicity, in this chapter, we adopt a one-dimensional model. In the
experiments, the light intensity outside the reaction field was changed. It is
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Figure 8.4: Numerical results based on eqs. (8.3) to (8.5). The spatio temporal
plots are shown. The parameters are f = 3, ε = 0.04, q = 0.0008, A = 100,
a = 8 × 10−9, and DU = DV = 1.

assumed that when the reaction field becomes thin, the diffusion from/to the
illuminated region becomes large. The activator diffuses from the reaction field
to the illuminated region, and the inhibitor (bromide ion) diffuses from the
illuminated area to the reaction field. This transfer can be described as follows:

∂U

∂t
=

1

ε

{
U(1 − U) − fV

U − q

U + q
+ F (U, x)

}
+ DU∇2U, (8.3)

∂V

∂t
= U − v + DV ∇2V, (8.4)

F (U, x) =

{
a(x − xc)

2
(
−AU−q

U+q
− U

)
, (x ≥ xc)

0, (x < xc)
(8.5)

where the a(x−xc)
2 is the factor that correspond to the amount of the transfer

between the reaction field and illuminated region. A is the variable which is
proportional to the light intensity in the illuminated region. This function is
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adopted in order to change the parameter smoothly.
(
AU−q

U+q
− U

)
corresponds

to the diffusion of the activator, U , from the reaction field to the illuminated
area and the effects of the illumination on the activator, −AU−q

U+q
.

Based on the eqs. (8.3) to (8.5), numerical calculation was performed. The
results of the calculation are shown in Fig. 8.4. The positions at which chemical
waves stop are changed alternatively. It is said that this simple model can
represent some essences of the experimental results.



Chapter 9

Synchronization of
photosensitive chemical waves
coupled in two circular excitable
fields

In this chapter, the geometry of chemical wave propagating on a cir-
cular ring is presented. The two chemical waves on the two contacted
circular rings are also discussed from the viewpoint of synchroniza-
tion [6].

9.1 Introduction

In Chapters 7 and 8, the anomalous chemical wave propagation on the reaction
field with a small scale is reported. In this chapter, on the other hand, the
chemical wave propagation on the excitable field with a shape of circular rings
is investigated.

Experimental and theoretical studies on wave propagation on an excitable
media may help us to not only understand signal processing in biological systems
[93] such as nerve impulses [26] but also to create novel methods for artificial
processing such as image processing [43, 44, 94, 95] and logic operations [85, 92,
96–99]. The Belousov-Zhabotinsky (BZ) reaction has been widely investigated
as an excitable or oscillatory chemical system. The BZ reaction on a membrane,
e.g., filter paper, [100, 101] nafion membrane, [102–104], gel [34, 69] or glass
filter, [105] has been widely studied because the spatio-temporal pattern of wave
propagation can be regulated by the geometry of the excitable field, which is
easily prepared by cutting or printing. In such systems, however, it can be
technically difficult to cut a membrane filter with a completely similar shape
and to regulate the number of chemical waves and their intervals.

A photosensitive experimental set-up of the BZ reaction makes it easy to cre-
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ate excitable fields of various geometries, which are drawn by computer software
and then projected on a membrane filter soaked with BZ solution using a liquid-
crystal projector. In this case, light illumination produces bromide ion which
inhibits the oscillatory reaction, i.e., the degree of excitability can be adjusted
by changing the intensity of illumination. Therefore, the number of chemical
waves and their intervals can be spatio-temporally regulated by illumination.

In this chapter, the propagation of chemical waves in the photosensitive
BZ reaction on an excitable field (a circular ring or a figure “8” composed of
two equivalent circular rings) illuminated with a liquid-crystal projector was
investigated. The nature of wave propagation depending on the ratio of the
inner and outer radii of the circular rings was well fitted as the involute of
a circle [106–109]. When the two equivalent circular rings slightly in contact
with one another, two chemical waves collided at a location apart from the
intersection. When two circular rings completely overlapped at the intersection,
the location of wave collision alternated with time. The essential feature of wave
propagation was qualitatively reproduced by a numerical calculation based on
the reaction-diffusion equations using the modified Oregonator.

9.2 Experiments

Ru(bpy)3Cl2 was used as a catalyst for the photosensitive BZ reaction. The BZ
solution consisted of [NaBrO3] = 0.45 M, [H2SO4] = 0.3 M, [CH2(COOH)2] = 0.2
M, [KBr] = 0.05 M, and [Ru(bpy)3Cl2] = 1.7 mM. Cellulose-nitrate membrane
filters (Advantec, A100A025A) with a pore size of 1 µm were soaked in BZ
solution (5 ml) for about 1 min. The soaked membrane was gently wiped with
filter paper to remove excess solution and placed on a petri dish (diameter: 100
mm). The surface of the membrane filter was completely covered with 1 ml
silicone oil (Wako, WF-30) to prevent it from drying and to protect it from
the influence of oxygen. The experiments were carried out in an air-conditioned
room at 298 K, at which the reaction medium showed no spontaneous excitation
and no change in behavior for approximately 30 min.

The medium was illuminated from below as schematically shown in Fig. 9.1.
The high-pressure mercury bulb of a liquid-crystal projector (MITSUBISHI,
LVP-XL8) was used as a light source and the spatial intensity distribution was
controlled with a personal computer. A black and white picture on the liquid-
crystal projector served as an illumination mask to create the appropriate bound-
ary, and the light intensities were 4.0×102 lx and 1.7×104 lx for black and white
regions, respectively. The experiments were monitored from above with a digital
video camera (SONY, DCR-VX700) and recorded on videotape. A blue optical
filter (Asahi Techno Glass, V-42) with a maximum transparency at 410 nm was
used to enhance the image of the chemical waves. The light intensity at the
illuminated part was measured with a light intensity meter (ASONE, LX-100).
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Figure 9.1: Schematic representation of experimental setup [6].

9.3 Results

9.3.1 Propagation of a single wave on a circular ring

First, we examined the radius-dependent propagation of a single wave on a reac-
tion field in the shape of a circular ring. In this experiment, two chemical waves
initially propagated in opposite directions. By the local illumination around
one wave within 1 s, the illuminated wave was disappeared, but another one
continued to propagate. Therefore the uni-directional chemical wave on the ring
was achieved. Figure 9.2(a) shows the velocity of wave propagation on a circular
ring depending on rout/rin (rin: inner radius, rout: outer radius of the circular
route). In this experiment, rin was varied under constant rout (= 6 mm). The
velocity of the chemical wave at the inner boundary of the circle (vin) was al-
most independent of rin. On the other hand, that at the outer boundary (vout)
was linearly increased with 1/rin, which indicates that the angular velocity of
the chemical wave (ω) was determined by the wave propagation near the inner
radius, i.e. ω = (vin/2π)/rin and vout = 2πroutω. The phase difference (∆θ),
which is schematically defined in Fig. 9.2, increased with rout/rin, as shown in
Fig. 9.2(b), i.e., the deformation of the chemical wave increased with the width
of the circular ring.

9.3.2 Collision of two chemical waves on two equivalent

circular rings

Next, we examined the interaction between two chemical waves on a reaction
field composed of two equivalent circular rings at rin = 2.1 mm and rout/rin = 2.0.
In this experiment, one chemical wave was initially generated in each ring in the
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Figure 9.2: Wave propagation on a circular ring depending on rout/rin for vin

(empty circle) and ∆θ (filled square). Corresponding snapshots are indicated in
the upper part. ∆θ, rout, rin, and vin are schematically defined at the right side
of the figure [6].

same direction (clockwise), and the chemical wave in the right ring reached the
intersection before that in the left ring.

When the distance between the centers of the two rings was nearly equal
to 2rout, i.e., the two rings were just slightly in contact with one another, the
location of the collision of the two waves was determined to be in the left ring
near the intersection, as shown in Figs. 9.3 (a-1) and (b-1). Here, θL and θR are
the angles corresponding to the positions of pulses on the left and right inner
rings, and they are plotted at the moment two pulses collide in Fig. 9.3 (b). The
location of the collision converged to 1.93π rad with time, and this convergent
value did not change even when the difference in the initial phases was larger
than 1.93π rad (data not shown) [110].

When the distance between the centers of the two rings was equal to rin+rout,
i.e., the two rings completely overlapped one another, the location of the collision
of the two waves changed alternatively, as shown in Figs. 9.3 (a-2) and (b-2),
i.e., the chemical wave from the right ring reached the intersection ahead of
that from the left ring, as seen in snapshots 1 and 3, or vice versa, as seen in
snapshots 2 and 4.
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Figure 9.3: Interactive wave propagation between two chemical waves in two
equivalent circular rings that (1) were slightly in contact and (2) completely
overlapped one another. (a) Top view of the snapshots of the wave propagation
with the time intervals of (1) 300 sec and (2) 250 sec. (b) θR (filled circle) and
θL (empty circle) when the two waves collided for (b-1) slightly connecting rings
and (b-2) completely overlapping rings. θL and θR were schematically defined
on the right side. The numbers of collision (1, 2, 3, 4) correspond to those in
(a) [6].

9.4 Discussion

9.4.1 The nature of chemical wave propagation in a single
circular ring.

Based on the experimental results and those in the related papers [106–109],
we now discuss the characteristics of the BZ wave propagation in a reaction
field designed by the light illumination. First, we analyze the shape of wave
propagation depending on rout/rin of the circular ring. If we suppose that the
wave propagates on the reaction field without any effects from the boundary,
and that the wave cannot move into the brighter area, the distance from a point
on the inner circle (point α) to another point (point β), which is one of the
locations at which the chemical wave propagates along the inner circle, is the
same as that to the intersection (point γ) between the chemical wave and the
tangent line at the noted point (point α), as schematically indicated in Fig. 9.4
(a), since the chemical wave propagates in a direction perpendicular to the wave
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Figure 9.4: (a) Schematic representation on the chemical wave with the shape
of the “involute” of a circle. (b)Comparison between the experimental results
and the analytical prediction. The solid squares are the experimental results
shown in Fig. 9.3, and the solid curve is the analytical prediction based on eq.
(9.6) [6].

front with a uniform velocity. Therefore, the shape of the chemical wave may
be regarded as the involute of a circle [106–109].

From the geometrical perspective, when the location of the chemical wave
on the inner circle of the ring (point β) is expressed as x = rin cos θin and
y = rin sin θin, that on the chemical wave is expressed using parameter θ,(

x
y

)
= rin

(
cos θ
sin θ

)
+ rin (θin − θ)

( − sin θ
cos θ

)
, (9.1)

where θ is the phase of the point α. We calculate the location of the intersection
between the chemical wave and the outer circle with a radius of rout, (point γ).
Here, the phase of the intersection is set as θout. From

r2
out = r2

in

(
1 + (θin − θ)2

)
, (9.2)

and

tan θout =
rin sin θ + rin (θin − θ) cos θ

rin cos θ − rin (θin − θ) sin θ
=

tan θ + (θin − θ)

1 − (θin − θ) tan θ
, (9.3)

we can get
tan θout = tan (θin + α) , (9.4)

where tanα =
√

r2
out − r2

in/rin = θin − θ. From eq. (9.4),

θout = θin + α = θin −
√

r2
out − r2

in/rin + arctan
(√

r2
out − r2

in/rin

)
. (9.5)

Therefore, we can derive

∆θ = θin − θout =
√

(rout/rin)
2 − 1 − arctan

(√
(rout/rin)

2 − 1
)

. (9.6)
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Figure 9.4 (b) shows the theoretical results obtained based on eq.(9.6). These
theoretical results suggest that the experimental results regarding the nature of
the chemical wave propagation shown in Fig. 9.4 can be quantitatively fitted by
a theoretical consideration based on the geometrical discussion. In the previous
study, Müller et al. and Noszticzius et al. reported that the shape of the chemical
wave is the involute of a circle and that it can be regarded as an Archimedes
spiral far enough from the tip of the wave [106–109]. In this study, the chemical
wave is well fit to the involute of a circle but not a spiral, since the core of the
spiral is much larger than that of the spiral pattern formed spontaneously.

9.4.2 The nature of chemical wave propagation on two
equivalent circular rings.

Following the above discussion, we calculated the nature of chemical wave prop-
agation in a reaction field composed of two equivalent circular rings. We derived
a characteristic phase differences ∆θ0 that depended on the shape of the reaction
field. First, it should be noted that there are two types of interaction between
the chemical waves on the two rings: in one type, the chemical wave on one ring
(ring A) propagates and touches the inner radius of the other ring (ring B), and
in the other type, the chemical wave does not touch it. In the former case, the
phase of the chemical wave on the ring A affects the phase of the chemical wave
on ring B. Therefore, the phase difference between the chemical waves on the
two rings is determined only by the shape of the reaction field. This difference
in phase on the two circular rings is set as ∆θ0. In the latter case, in contrast,
the chemical wave on the ring A does not affect the chemical wave propagation
on ring B. These two cases are selected by the initial phase difference between
θL and θR when they reach a stationary propagation without collision. This
characteristic phase difference ∆θ0 is analytically derived as follows:

We consider chemical wave propagation on a field composed of two circular
rings with overlap d, as shown in Fig. 9.5(a). Here, we derive the characteristic
phase difference ∆θ0 between the phase of the chemical wave in one ring (ring A)
and that of the chemical wave on the other ring (ring B) after the chemical wave
on the ring A affects chemical wave propagation on ring B. The time required
for a chemical wave to reach a certain point can be calculated from the shortest
path. Therefore, we have to consider the two cases as shown in Fig. 9.5.

In the case in Fig. 9.5 (b-1), i.e.,

√
r2
out − (rout − d/2)2 > rin, (9.7)

the shortest path from one ring to the other ring is a straight line, and the
length, L, is

L = 2rout − d. (9.8)

If we suppose that the chemical wave on the ring A affects the chemical wave
propagation on ring B, the phases of the chemical waves on rings A and B, θA
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Figure 9.5: Schematic representation of (a) the shape of the reaction field and
(b) the shortest path when the chemical wave in one ring propagates to the other
ring. (b-1) When the shortest path is a straight line. (b-2) When the shortest
path is a V-shaped line [6].

and θB, can be written as

θA = −π

2
+

v

rin
t, (9.9)

and

θB =
π

2
+

v

rin

(
t − L

v

)
, (9.10)

where t is time. Therefore, the characteristic phase difference ∆θ0 is derived as

∆θ0 = θB − θA = π − 2rout − d

rin
. (9.11)

On the other hand, in the case of Fig. 9.5 (b-2), i.e.,

√
r2
out − (rout − d/2)2 < rin, (9.12)

the shortest path is a V-shaped line, and L is derived as

L = 2
√

r2
out − r2

in. (9.13)

If we suppose that the chemical wave on ring A affects the chemical wave prop-
agation on ring B, θA and θB can be written as

θA = −Θ0 +
v

rin

t, (9.14)

and

θB = Θ0 +
v

rin

(
t − L

v

)
, (9.15)
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Figure 9.6: Phase map of the synchronization of chemical wave propagation in
a reaction field composed of two equivalent circular rings depending on R =
rout/rin and D = d/rin. Region I corresponds to collision at one point, and
region II corresponds to alternative collisions [6].

where

Θ0 = arccos
(

rin

rout

)
+ arccos

(
rout − d/2

rout

)
. (9.16)

Therefore, the characteristic phase difference ∆θ0 is derived as

∆θ0 = θB − θA = 2Θ0 −
2
√

r2
out − r2

in

rin

. (9.17)

In summary, the characteristic phase difference ∆θ0 is written as

∆θ0 = θB − θA =

{
π − 2R + D (R > D/4 + 1/D)

2Θ0 − 2
√

R2 − 1 (R < D/4 + 1/D)
, (9.18)

and

Θ0 = arccos
(

1

R

)
+ arccos

(
1 − D

2R

)
. (9.19)

These equations are written in the nondimensional form using R = rout/rin and
D = d/rin. The phase map shown in Fig. 9.6 is drawn according to the sign of
∆θ0.

According to the above discussion, when the initial phase difference is smaller
than |∆θ0|, the phase difference is maintained. Though we do not show the ex-
perimental data corresponding to this case, but this features are confirmed in the
experiments [110]. On the other hand, when the initial phase difference is larger
than |∆θ0|, the chemical waves on the two rings affect each other: If ∆θ0 < 0
(Region I), the phase difference is fixed as |∆θ0|. If ∆θ0 > 0 (Region II), the
phase difference changes alternatively. Thus, the location of the collision of the
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Figure 9.7: Results of the numerical calculation for a reaction field in the shape
of a circular ring based on the modified Oregonator model shown in eqs. (9.20)
and (9.21). (a) Snapshots for the various values of rout/rin. (b) Wave velocity
along the inner boundary vin (empty circle) and the phase difference between the
locations of the chemical wave along the inner and outer boundaries ∆θ (filled
square) depending on rout/rin. The curve derived from the analytical discussion
is also described as a solid curve. The parameters used in the calculations are
f = 1, ε = 0.05, q = 0.00015, and DU = DV = 1. The chemical wave is initiated
by setting U = 0.5 at a certain point. Some time later, the two chemical waves
propagate in opposite directions. By increasing the variable for light intensity,
A, in a certain area for some length of time, we can make one wave disappear,
and a unidirectional chemical wave is achieved [6].

two waves changes alternatively. Figure 9.6 shows a phase map that depends on
R (the ratio between the inner and outer radii, rout/rin) and D (the ratio between
the overlap and the inner radius, d/rin). The characteristics of the chemical wave
propagation shown in 1 and 2 in Fig. 9.3 in the experiments correspond to re-
gions I and II, respectively. The properties of chemical wave propagation on two
equivalent circular rings can be understood analytically within this framework.
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9.4.3 Numerical calculation using the modified Oregona-
tor model

We performed numerical calculations based on the modified Oregonator [90–92]:

∂U

∂t
=

1

ε

{
U(1 − U) − (fV + A)

U − q

U + q

}
+ DU∇2U, (9.20)

∂V

∂t
= U − v + DV ∇2V, (9.21)

where U and V are the dimensionless variable that correspond to the concentra-
tions of the activator (HBrO2) and the oxidized catalyst ([Ru(bpy)3]

3+), respec-
tively. f , ε and q are the positive parameters that determine the nature of the
BZ reaction, DU and DV are the diffusion constants for the activator and the
oxidized catalyst, and A is the variable that is proportional to the light intensity.
We set A = 0.03 in the brighter area and 0.005 in the darker area, respectively.

The results of the numerical calculation for a reaction field in the shape of a
circular ring are shown in Fig. 9.7. The relationship between ∆θ and rout/rin is
described together with the analytical prediction by eq. (9.6). This dependency
is well described by the analytical discussion, and the experimental, theoretical
and numerical results are all consistent with one another.

Figure 9.8 shows the numerical results for a reaction field in the shape of a
figure “8”, which is composed of two equivalent circular rings. When the two
circular rings slightly in contact with one another, the phase difference is fixed
at a constant value, as shown in Figs. 9.8 (a-1) and (b-1). On the other hand,
when they completely overlap, the phase difference changes alternatively; i.e.,
the location of the collision changes alternatively, as shown in Figs. 9.8 (a-2)
and (b-2). These experimental and analytical results are well reproduced by the
numerical calculations.
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Figure 9.8: Results of a numerical calculation for a reaction field in the shape
of a figure “8” composed of two equivalent circular rings based on the modified
Oregonator model shown in eqs. (9.20) and (9.21). (a) Snapshots of a typical na-
ture of wave propagation for (a-1) slightly connected rings and (a-2) completely
overlapping rings. (b) Phases of the locations of collision versus the number
of collision for (b-1) slightly connecting rings and (b-2) completely overlapping
rings. The parameters and the initial conditions are the same as those in Fig.
9.7. The shape of the field is rout/rin = 2 for both (1) and (2), d/rin = 2/9 for
(1), and d/rin = 1 for (2) [6].
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Chapter 10

Conclusion

10.1 Conclusion

In this thesis, the experimental and theoretical results on the reaction diffusion
systems coupled with convection and geometrical effects are demonstrated.

As for the reaction-diffusion systems coupled with convection, the sponta-
neous motion can be exhibited induced by the spatio-temporal pattern formation
in reaction-diffusion systems. At the same time, the convective flow of the field
can cause the spatio-pattern formation:

In the BZ reaction system, convective flow in the bulk phase can be observed
induced by the repetitive change in interfacial tension of BZ medium (Chapter
3). This convection can cause the spontaneous motion of a small droplet of BZ
reaction medium (Chapter 4). In the water-camphor system, convective flow
coupled with the surface diffusion of the camphor layer can be observed. This
convective flow can affect the spontaneous motion of a camphor disk (Chapter
5). These two systems can be understood as a reaction-diffusion systems cou-
pled with convection through interfacial tension. Some other systems, i.e.: the
spontaneous motions of an alcohol droplet in the water-alcohol system, an oil
droplet on the glass substrate in the surfactant solution, and a phenanthroline
disk in the ferrous sulfate solution are also exhibited (Chapter 6).

As for the boundary effects in reaction-diffusion systems, the characteristics
of the chemical wave changes when the system size is comparable to the chem-
ical wave itself. In this part, the anomalous behavior of chemical waves are
exemplified:

In Chapter 7, the slowing and stopping of the chemical wave in the narrowing
glass capillary is exemplified in BZ reaction. The mechanism is theoretically an-
alyzed related to the surface-volume ratio. The scaling analysis was performed,
and the experimental results can be reproduced. In Chapter 8, the narrowing
reaction field is achieved using light illumination in photosensitive BZ reaction.
The alternative disappearing of the propagating chemical waves are observed.
In Chapter 9, the geometry of chemical wave propagating on a circular ring
is studied. The two chemical waves on two connected circular rings are also
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discussed from the viewpoint of synchronization.

Considering the phenomena in the real world, especially in the living or-
ganisms, the rhythmicity, pattern formation, and directional motion should be
coupled with each other. The system has a finite size and the boundary of the
system should affect seriously. In order to discuss on the mechanism of the
nonequilibrium systems, these convective effects and boundary effects cannot be
avoided. The discussions in this thesis may help to understand the mechanism
on how the convective flow and geometrical effects of the boundary affect the
nonequilibrium systems.

10.2 Future problems

In proceeding the studies on the reaction diffusion systems coupled with convec-
tive flow or geometrical effects of the boundary, a lot of problems or difficulties
have come out and some remained to be unsolved so far. The followings are
some of the future problems:

In Part II, several numerical calculations based on the reaction-diffusion-
advection equations coupled through the interfacial tension gradient were per-
formed. The numerical results reproduce the experimental results to some ex-
tent, but some characteristics cannot be reproduced. For example, in the exper-
iments of the convective flow induced by BZ reaction (Chapter 3), the strong
convective flow can be observed before the wave front. On the other hand, in
the numerical calculation, strong flow can be observed only near the wave front.

I guess that these differences are due to the nonequilibrium condition. The
interfacial tension is defined in the equilibrium state, but in this case, the con-
centration of the surface-active compounds is not uniform, which means that the
system is under nonequilibrium condition. Thus, the interfacial tension cannot
be defined in the similar way to that in the equilibrium state. The interfacial
tension under nonequilibrium condition should be studied more from both the
microscopic and macroscopic points of view.

In Part III, some characteristic behaviors of the chemical wave propagation
are presented in the reaction field with the size of 10 µm to 1 mm. In this
scale, the singularity is due to the surface-volume ratio. In other words, the
condition near the surface is different from that in the bulk phase, and the
total behavior changes because the ratio of the region affected from the surface
relatively increases.

In a much smaller system, another singularity may happen: the fluctuation
of the concentration. In the reaction with an autocatalytic process, such as
the BZ reaction, has a state with a little concentration of some chemical com-
pounds. For example, in the BZ reaction, the concentration of the activator is
very little during a certain span in the oscillation. The fluctuation of the num-
ber of molecules is supposed to be proportional to N1/2, where N is the number
of molecules. Thus, in a very small system, the fluctuation of the number of
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molecule can appear as the fluctuation of the period of the chemical oscillation.
This is an interesting problem from the viewpoints of not only physics but also
life sciences, since the behavior of the molecules inside the cell should be affected
by this fluctuation.
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